pg_utils.pg_model.forcing.Lz_asym_lin_cg

pg_utils.pg_model.forcing.Lz_asym_lin_cg = sqrt(2)*s*B_+^{0+}(s, \phi, t)*b_z^+(s, \phi, t)/(2*H(s)) - sqrt(2)*s*B_+^{0-}(s, \phi, t)*b_z^-(s, \phi, t)/(2*H(s)) + sqrt(2)*s*B_-^{0+}(s, \phi, t)*b_z^+(s, \phi, t)/(2*H(s)) - sqrt(2)*s*B_-^{0-}(s, \phi, t)*b_z^-(s, \phi, t)/(2*H(s)) + sqrt(2)*s*B_z^+(s, \phi, t)*b_+^+(s, \phi, t)/(2*H(s)) + sqrt(2)*s*B_z^+(s, \phi, t)*b_-^+(s, \phi, t)/(2*H(s)) - sqrt(2)*s*B_z^-(s, \phi, t)*b_+^-(s, \phi, t)/(2*H(s)) - sqrt(2)*s*B_z^-(s, \phi, t)*b_-^-(s, \phi, t)/(2*H(s)) + 2*B_z^+(s, \phi, t)*b_z^+(s, \phi, t) + 2*B_z^-(s, \phi, t)*b_z^-(s, \phi, t) - 4*B_{z}^e(s, \phi, t)*b_{z}^e(s, \phi, t) + sqrt(2)*Derivative(\widetilde{m_{z+}}(s, \phi, t), s)/2 + sqrt(2)*Derivative(\widetilde{m_{z-}}(s, \phi, t), s)/2 + sqrt(2)*\widetilde{m_{z+}}(s, \phi, t)/(2*s) + sqrt(2)*\widetilde{m_{z-}}(s, \phi, t)/(2*s) - sqrt(2)*I*Derivative(\widetilde{m_{z+}}(s, \phi, t), \phi)/(2*s) + sqrt(2)*I*Derivative(\widetilde{m_{z-}}(s, \phi, t), \phi)/(2*s)[source]

Linearized form of \(\widetilde{L_z}\) in conjugate vars