pg_utils.pg_model.forcing.Le_p_lin_cg

pg_utils.pg_model.forcing.Le_p_lin_cg = -sqrt(2)*I*B_{+, z}^{0e}(s, \phi, t)*b_{z}^e(s, \phi, t)/2 - I*B_{+}^{0e}(s, \phi, t)*Derivative(b_{+}^e(s, \phi, t), s)/2 + I*B_{+}^{0e}(s, \phi, t)*Derivative(b_{-}^e(s, \phi, t), s)/2 + sqrt(2)*I*B_{-, z}^{0e}(s, \phi, t)*b_{z}^e(s, \phi, t)/2 - I*B_{-}^{0e}(s, \phi, t)*Derivative(b_{+}^e(s, \phi, t), s)/2 + I*B_{-}^{0e}(s, \phi, t)*Derivative(b_{-}^e(s, \phi, t), s)/2 - sqrt(2)*I*B_{z}^e(s, \phi, t)*b_{+, z}^e(s, \phi, t)/2 + sqrt(2)*I*B_{z}^e(s, \phi, t)*b_{-, z}^e(s, \phi, t)/2 - I*b_{+}^e(s, \phi, t)*Derivative(B_{+}^{0e}(s, \phi, t), s)/2 + I*b_{+}^e(s, \phi, t)*Derivative(B_{-}^{0e}(s, \phi, t), s)/2 - I*b_{-}^e(s, \phi, t)*Derivative(B_{+}^{0e}(s, \phi, t), s)/2 + I*b_{-}^e(s, \phi, t)*Derivative(B_{-}^{0e}(s, \phi, t), s)/2 - I*B_{+}^{0e}(s, \phi, t)*b_{+}^e(s, \phi, t)/s - B_{+}^{0e}(s, \phi, t)*Derivative(b_{+}^e(s, \phi, t), \phi)/(2*s) + B_{+}^{0e}(s, \phi, t)*Derivative(b_{-}^e(s, \phi, t), \phi)/(2*s) + I*B_{-}^{0e}(s, \phi, t)*b_{-}^e(s, \phi, t)/s + B_{-}^{0e}(s, \phi, t)*Derivative(b_{+}^e(s, \phi, t), \phi)/(2*s) - B_{-}^{0e}(s, \phi, t)*Derivative(b_{-}^e(s, \phi, t), \phi)/(2*s) - b_{+}^e(s, \phi, t)*Derivative(B_{+}^{0e}(s, \phi, t), \phi)/(2*s) + b_{+}^e(s, \phi, t)*Derivative(B_{-}^{0e}(s, \phi, t), \phi)/(2*s) + b_{-}^e(s, \phi, t)*Derivative(B_{+}^{0e}(s, \phi, t), \phi)/(2*s) - b_{-}^e(s, \phi, t)*Derivative(B_{-}^{0e}(s, \phi, t), \phi)/(2*s)[source]

Linearized form of \(L_{\phi}^e\) in conjugate vars