pg_utils.pg_model.forcing.Ls_sym_lin_cg
- pg_utils.pg_model.forcing.Ls_sym_lin_cg = s*B_+^{0+}(s, \phi, t)*b_+^+(s, \phi, t)/H(s) + s*B_+^{0+}(s, \phi, t)*b_-^+(s, \phi, t)/H(s) + s*B_+^{0-}(s, \phi, t)*b_+^-(s, \phi, t)/H(s) + s*B_+^{0-}(s, \phi, t)*b_-^-(s, \phi, t)/H(s) + s*B_-^{0+}(s, \phi, t)*b_+^+(s, \phi, t)/H(s) + s*B_-^{0+}(s, \phi, t)*b_-^+(s, \phi, t)/H(s) + s*B_-^{0-}(s, \phi, t)*b_+^-(s, \phi, t)/H(s) + s*B_-^{0-}(s, \phi, t)*b_-^-(s, \phi, t)/H(s) + sqrt(2)*B_+^{0+}(s, \phi, t)*b_z^+(s, \phi, t)/2 - sqrt(2)*B_+^{0-}(s, \phi, t)*b_z^-(s, \phi, t)/2 + sqrt(2)*B_-^{0+}(s, \phi, t)*b_z^+(s, \phi, t)/2 - sqrt(2)*B_-^{0-}(s, \phi, t)*b_z^-(s, \phi, t)/2 + sqrt(2)*B_z^+(s, \phi, t)*b_+^+(s, \phi, t)/2 + sqrt(2)*B_z^+(s, \phi, t)*b_-^+(s, \phi, t)/2 - sqrt(2)*B_z^-(s, \phi, t)*b_+^-(s, \phi, t)/2 - sqrt(2)*B_z^-(s, \phi, t)*b_-^-(s, \phi, t)/2 + Derivative(\overline{m_+}(s, \phi, t), s)/2 + Derivative(\overline{m_-}(s, \phi, t), s)/2 + Derivative(\overline{m_1}(s, \phi, t), s) + \overline{m_+}(s, \phi, t)/s + \overline{m_-}(s, \phi, t)/s - I*Derivative(\overline{m_+}(s, \phi, t), \phi)/(2*s) + I*Derivative(\overline{m_-}(s, \phi, t), \phi)/(2*s)[source]
Linearized form of \(\overline{L_s}\) in conjugate vars