pg_utils.pg_model.forcing.Ls_sym_cg

pg_utils.pg_model.forcing.Ls_sym_cg = s*((B_+^+(s, \phi, t) + B_-^+(s, \phi, t))**2/2 + (B_+^-(s, \phi, t) + B_-^-(s, \phi, t))**2/2)/H(s) + sqrt(2)*(B_+^+(s, \phi, t) + B_-^+(s, \phi, t))*B_z^+(s, \phi, t)/2 - sqrt(2)*(B_+^-(s, \phi, t) + B_-^-(s, \phi, t))*B_z^-(s, \phi, t)/2 - (-\overline{M_+}(s, \phi, t)/2 - \overline{M_-}(s, \phi, t)/2 + \overline{M_1}(s, \phi, t))/s + (s*Derivative(\overline{M_+}(s, \phi, t)/2 + \overline{M_-}(s, \phi, t)/2 + \overline{M_1}(s, \phi, t), s) + \overline{M_+}(s, \phi, t)/2 + \overline{M_-}(s, \phi, t)/2 + \overline{M_1}(s, \phi, t))/s + Derivative(-I*(\overline{M_+}(s, \phi, t)/2 - \overline{M_-}(s, \phi, t)/2), \phi)/s[source]

Expression: symmetric integral of the radial Lorentz force in conjugate vars