pg_utils.pg_model.forcing.Lp_sym_lin_cg
- pg_utils.pg_model.forcing.Lp_sym_lin_cg = -I*s*B_+^{0+}(s, \phi, t)*b_+^+(s, \phi, t)/H(s) - I*s*B_+^{0-}(s, \phi, t)*b_+^-(s, \phi, t)/H(s) + I*s*B_-^{0+}(s, \phi, t)*b_-^+(s, \phi, t)/H(s) + I*s*B_-^{0-}(s, \phi, t)*b_-^-(s, \phi, t)/H(s) - sqrt(2)*I*B_+^{0+}(s, \phi, t)*b_z^+(s, \phi, t)/2 + sqrt(2)*I*B_+^{0-}(s, \phi, t)*b_z^-(s, \phi, t)/2 + sqrt(2)*I*B_-^{0+}(s, \phi, t)*b_z^+(s, \phi, t)/2 - sqrt(2)*I*B_-^{0-}(s, \phi, t)*b_z^-(s, \phi, t)/2 - sqrt(2)*I*B_z^+(s, \phi, t)*b_+^+(s, \phi, t)/2 + sqrt(2)*I*B_z^+(s, \phi, t)*b_-^+(s, \phi, t)/2 + sqrt(2)*I*B_z^-(s, \phi, t)*b_+^-(s, \phi, t)/2 - sqrt(2)*I*B_z^-(s, \phi, t)*b_-^-(s, \phi, t)/2 - I*Derivative(\overline{m_+}(s, \phi, t), s)/2 + I*Derivative(\overline{m_-}(s, \phi, t), s)/2 - I*\overline{m_+}(s, \phi, t)/s + I*\overline{m_-}(s, \phi, t)/s - Derivative(\overline{m_+}(s, \phi, t), \phi)/(2*s) - Derivative(\overline{m_-}(s, \phi, t), \phi)/(2*s) + Derivative(\overline{m_1}(s, \phi, t), \phi)/s[source]
Linearized form of \(\overline{L_{\phi}}\) in conjugate vars