pg_utils.pg_model.forcing.Lp_sym_cg
- pg_utils.pg_model.forcing.Lp_sym_cg = s*(-I*(B_+^+(s, \phi, t) - B_-^+(s, \phi, t))*(B_+^+(s, \phi, t) + B_-^+(s, \phi, t))/2 - I*(B_+^-(s, \phi, t) - B_-^-(s, \phi, t))*(B_+^-(s, \phi, t) + B_-^-(s, \phi, t))/2)/H(s) - sqrt(2)*I*(B_+^+(s, \phi, t) - B_-^+(s, \phi, t))*B_z^+(s, \phi, t)/2 + sqrt(2)*I*(B_+^-(s, \phi, t) - B_-^-(s, \phi, t))*B_z^-(s, \phi, t)/2 + (s*Derivative(-I*(\overline{M_+}(s, \phi, t)/2 - \overline{M_-}(s, \phi, t)/2), s) - I*(\overline{M_+}(s, \phi, t)/2 - \overline{M_-}(s, \phi, t)/2))/s - I*(\overline{M_+}(s, \phi, t)/2 - \overline{M_-}(s, \phi, t)/2)/s + Derivative(-\overline{M_+}(s, \phi, t)/2 - \overline{M_-}(s, \phi, t)/2 + \overline{M_1}(s, \phi, t), \phi)/s[source]
Expression: symmetric integral of the azimuthal Lorentz force in conjugate vars