pg_utils.pg_model.forcing.Lz_asym_cg
- pg_utils.pg_model.forcing.Lz_asym_cg = s*(sqrt(2)*(B_+^+(s, \phi, t) + B_-^+(s, \phi, t))*B_z^+(s, \phi, t)/2 - sqrt(2)*(B_+^-(s, \phi, t) + B_-^-(s, \phi, t))*B_z^-(s, \phi, t)/2)/H(s) + B_z^+(s, \phi, t)**2 + B_z^-(s, \phi, t)**2 - 2*B_{z}^e(s, \phi, t)**2 + (s*Derivative(sqrt(2)*(\widetilde{M_{z+}}(s, \phi, t) + \widetilde{M_{z-}}(s, \phi, t))/2, s) + sqrt(2)*(\widetilde{M_{z+}}(s, \phi, t) + \widetilde{M_{z-}}(s, \phi, t))/2)/s + Derivative(-sqrt(2)*I*(\widetilde{M_{z+}}(s, \phi, t) - \widetilde{M_{z-}}(s, \phi, t))/2, \phi)/s[source]
Expression: antisymmetric integral of the axial Lorentz force in conjugate vars