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Abstract
For a (contravariant) tensor field, regularity of its components in polar coordinates is not sufficient

for the tensor field to be regular. The Fourier coefficients of these polar components must fulfill
certain additional requirements to resolve the coordinate singularity at the origin/pole. Following
the footsteps of Lewis and Bellan (1990), we derive the necessary and sufficient conditions on the
Fourier coefficients of tensors in polar coordinates for the entire field to be regular. A general set
of linear equations is formally set up, which can be evaluated and reduced for arbitrary tensor rank.
These requirements are further explicitly written out for tensor ranks 0 (scalar), 1 (vector) and 2,
where the linear systems are comparatively easy to decipher. These constraints will become useful
in numerical experiments, where a tensor field is parameterized in polar/cylindrical coordinates.

1 Tensors, transformation between different basis

Let T be a rank-𝑘 (contravariant) tensor in 𝑁-dimensional space. Consider two sets of basis, whose
transformation relation is given by

ê𝑖 =
𝑁∑︁
𝑗=1

𝑅𝑖 𝑗 ê′𝑗 , ê′𝑖 =
𝑁∑︁
𝑗=1

𝑅 𝑗𝑖 ê 𝑗 . (1)

In its component form, tensor T is denoted by 𝑇p = 𝑇𝑝1 · · ·𝑝𝑘 , where p is a 𝑘-index array. The components
of the tensor take different values under different basis, which are related via

𝑇p = 𝑇𝑝1, 𝑝2 · · ·𝑝𝑘 =

𝑁∑︁
𝑞1 · · ·𝑞𝑘=1

𝑅𝑝1,𝑞1𝑅𝑝2,𝑞2 · · · 𝑅𝑝𝑘 ,𝑞𝑘𝑇
′
𝑞1,𝑞2 · · ·𝑞𝑘 =

∑︁
q

𝑅𝑝1,𝑞1𝑅𝑝2,𝑞2 · · · 𝑅𝑝𝑘 ,𝑞𝑘𝑇
′
q

𝑇p = 𝑇 ′
𝑝1, 𝑝2 · · ·𝑝𝑘 =

𝑁∑︁
𝑞1 · · ·𝑞𝑘=1

𝑅𝑞1, 𝑝1𝑅𝑞2, 𝑝2 · · · 𝑅𝑞𝑘 , 𝑝𝑘𝑇𝑞1,𝑞2 · · ·𝑞𝑘 =
∑︁

q
𝑅𝑞1, 𝑝1𝑅𝑞2, 𝑝2 · · · 𝑅𝑞𝑘 , 𝑝𝑘𝑇

′
q

(2)

Note here
∑𝑁

𝑞1 · · ·𝑞𝑘=1 =
∑

q is a 𝑘-fold summation. Here we only consider the contravariant tensors,
representing quantities that are objective / invariant with respect to rotation of the reference frame. Under
generic basis, a tensor field whose components are regular may not necessarily be regular. However, there
is a special set of basis, namely Cartesian basis, under which the regularity of the components guarantees
the regularity of the tensor field. It follows naturally, that the constraints on the field components in other
coordinate system can be derived by converting the field into Cartesian coordinates.

2 Polar coordinates

Let us restrict ourselves to polar coordinates, in 𝑁 = 2 dimensional space. The polar coordinates are
related to Cartesian coordinates via{

𝑥 = 𝜌 cos 𝜙
𝑦 = 𝜌 sin 𝜙

𝜌 =

√︃
𝑥2 + 𝑦2

𝜙 = arctan (𝑥, 𝑦)
(3)
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We shall use prime to mark variables in the polar coordinates, and the unprimed variables are used for
their counterparts in Cartesian coordinates. For the Cartesian coordinates, ê1 = x̂ and ê2 = ŷ; for the
polar coordinates, we use the convention ê′1 = ρ̂ and ê′2 = ϕ̂. The two local basis can be transformed to
one another via (

x̂
ŷ

)
= R

(
ρ̂

ϕ̂

)
,

(
ρ̂

ϕ̂

)
= RT

(
x̂
ŷ

)
(4)

where the transformation matrix

R =
(
𝑅𝑝𝑞

)
=

(
cos 𝜙 − sin 𝜙
sin 𝜙 cos 𝜙

)
=

1
2

(
𝑒𝑖𝜙 + 𝑒−𝑖𝜙 𝑖

(
𝑒𝑖𝜙 − 𝑒−𝑖𝜙

)
−𝑖

(
𝑒𝑖𝜙 − 𝑒−𝑖𝜙

)
𝑒𝑖𝜙 + 𝑒−𝑖𝜙

)
=

1
2

(
1 𝑖

−𝑖 1

)
𝑒𝑖𝜙 + 1

2

(
1 −𝑖
𝑖 1

)
𝑒−𝑖𝜙 =

1
2

Q𝑒𝑖𝜙 + 1
2

QT𝑒−𝑖𝜙
(5)

The matrix Q here is Hermitian, and QHQ = Q2 = 2I, QQT = QTQ = 0. Due to the relation (3),
conversion from polar coordinates to Cartesian coordinates introduces a coordinate singularity at the
origin. It is therefore possible that 𝑇 ′

q are all regular functions, but 𝑇p are not. We seek to pose constraints
on 𝑇 ′

q such that 𝑇p, and hence T, are regular. More specifically, we seek to find the conditions on the
Fourier coefficients of 𝑇 ′

q.

3 Regularity conditions on the Fourier coefficients in polar coordinates

We first further transform the transformation relation of tensor components under different basis. Using
the decomposition eq. (5), we can expand the successive product of transformation matrices as

𝑘∏
𝑗=1

𝑅𝑝 𝑗 ,𝑞 𝑗
= 𝑅𝑝1,𝑞1 · · · 𝑅𝑝𝑘 ,𝑞𝑘 =

1
2𝑘

𝑘∏
𝑗=1

(
𝑄𝑝 𝑗 ,𝑞 𝑗

𝑒𝑖𝜙 +𝑄𝑞 𝑗 , 𝑝 𝑗
𝑒−𝑖𝜙

)
=

1
2𝑘

𝑘∑︁
𝑘′=0

𝑒𝑖 (𝑘−2𝑘′ )𝜙
∑︁

𝑆𝑙∈ (𝑆,𝑘′ )

∏
𝑗∉𝑆𝑙

𝑄𝑝 𝑗 ,𝑞 𝑗

∏
𝑗∈𝑆𝑙

𝑄𝑞 𝑗 , 𝑝 𝑗
.

Here 𝑆 = {1, 2, · · · 𝑘} is the set of all positive tensor rank indices, and (𝑆, 𝑘 ′) denotes a collection of
all sets which are 𝑘 ′-combination of 𝑆. At each 𝑘 ′, we iterate over all possible 𝑘 ′-combinations of
the indices, multiply the matrix elements 𝑄𝑞 𝑗 , 𝑝 𝑗

corresponding to these indices 𝑗 together, and then
multiply the matrix elements 𝑄𝑝 𝑗 ,𝑞 𝑗

of the remaining indices. These products corresponding to different
𝑘 ′-combinations are then summed together to form the term at 𝑒𝑖 (𝑘−2𝑘′ )𝜙. To get a feeling about the
terms in the summation, we can take a look at their general shape. Expanding the first and the last terms,
the summation of 𝑘 ′ can be formally written as

1
2𝑘

𝑒𝑖𝑘𝜙
𝑘∏
𝑗=1

𝑄𝑝 𝑗 ,𝑞 𝑗
+ 𝑒𝑖 (𝑘−2)𝜙 (· · · ) + · · · 1

2𝑘
𝑒−𝑖𝑘𝜙

𝑘∏
𝑗=1

𝑄𝑞 𝑗 , 𝑝 𝑗
.

This means the 𝑘 successive operations of the rotation matrix involve modification to the azimuthal
wavenumber, by a bandwidth of 𝑘 , and a stride of 2. The part in 𝑇 ′

q, which has azimuthal wavenumber
𝑚, will be scattered to azimuthal wavenumbers 𝑚 − 𝑘 , 𝑚 − 𝑘 + 2, ... 𝑚 + 𝑘 in the Cartesian frame;
conversely, the components in Cartesian frame with azimuthal wavenumber 𝑚 contain contributions
from components in polar coordinates with azimuthal wavenumber 𝑚 − 𝑘 , 𝑚 − 𝑘 + 2, ... 𝑚 + 𝑘 . This can
be more readily seen if we expand the tensor components under polar coordinates in Fourier series,

𝑇 ′
q =

+∞∑︁
𝑚=−∞

𝑇 ′𝑚
q 𝑒𝑖𝑚𝜙 (6)
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and write the Cartesian components as

𝑇p =
∑︁

q

𝑘∏
𝑗=1

𝑅𝑝 𝑗 ,𝑞 𝑗

∑︁
𝑚

𝑒𝑖𝑚𝜙𝑇 ′𝑚
q

=
1
2𝑘

∑︁
q

©«
𝑘∑︁

𝑘′=0
𝑒𝑖 (𝑘−2𝑘′ )𝜙

∑︁
𝑆𝑙∈ (𝑆,𝑘′ )

∏
𝑗∉𝑆𝑙

𝑄𝑝 𝑗 ,𝑞 𝑗

∏
𝑗∈𝑆𝑙

𝑄𝑞 𝑗 , 𝑝 𝑗

ª®¬
∑︁
𝑚

𝑒𝑖𝑚𝜙𝑇 ′𝑚
q

=
1

2 𝑘
2

∑︁
𝑚

𝑒𝑖𝑚𝜙

𝑘∑︁
𝑘′=0

𝑒𝑖 (𝑘−2𝑘′ )𝜙
∑︁

q

©«
∑︁

𝑆𝑙∈ (𝑆,𝑘′ )

∏
𝑗∈𝑆𝑙

𝑄𝑞 𝑗 , 𝑝 𝑗

∏
𝑗∉𝑆𝑙

𝑄𝑝 𝑗 ,𝑞 𝑗

ª®¬𝑇 ′𝑚
q .

(7)

Each modified azimuthal wavenumber term has a coefficient that is a linear combination of the Fourier
coefficients of the tensor components in polar coordinates at the unmodified wavenumber. Note that the
exponential functions can be expressed in Cartesian coordinates as

𝑒𝑖𝜙 =
𝑥 + 𝑖𝑦

𝜌
=

𝑥 + 𝑖𝑦√︁
𝑥2 + 𝑦2

, 𝑒−𝑖𝜙 =
𝑥 − 𝑖𝑦

𝜌
=

𝑥 − 𝑖𝑦√︁
𝑥2 + 𝑦2

(8)

It follows that for a term 𝐴𝑒𝑖𝑘𝜙 to be regular at the origin, the necessary and sufficient condition is 𝐴

has the expansion 𝜌𝑘𝐶 (𝜌) in some vicinity of the origin. Here 𝐶 (𝜌) denotes a regular function in 𝜌,
which of course has Taylor series at the origin. In fact, if 𝐴𝑒𝑖𝑘𝜙 is part of a scalar field, we can further
conclude from symmetric constraints (see Lewis and Bellan 1990) that 𝐴(𝜌) = 𝜌𝑘𝐶 (𝜌2). The Cartesian
components of the tensor can, in fact, be treated as scalars, since

𝑇𝑝1 · · ·𝑝𝑘 = T 𝑘· · ·
(
ê𝑝1 ê𝑝2 · · · ê𝑝𝑘

)
is a 𝑘-fold contraction between tensor T and a rank-𝑘 constant dyadic, which is also a tensor. The result
of the contraction is then a scalar. Based on eqn. (7), we can immediately write a set of sufficient
conditions for the field to be regular. At each 𝑚, we have

∑︁
q

©«
∑︁

𝑆𝑙∈ (𝑆,𝑘′ )

∏
𝑗∈𝑆𝑙

𝑄𝑞 𝑗 , 𝑝 𝑗

∏
𝑗∉𝑆𝑙

𝑄𝑝 𝑗 ,𝑞 𝑗

ª®¬𝑇 ′𝑚
q = 𝜌 |𝑚+𝑘−2𝑘′ |𝐶 (𝜌2), 𝑘 ′ = 0, 1, · · · 𝑘,∀p (9)

Now p has 2𝑘 different configurations, these equations will form a system of 2𝑘 (𝑘 + 1) regularity
constraints. However, 𝑇 ′𝑚

q contains only 2𝑘 available coefficients at given azimuthal wavenumber 𝑚.
This means that the 2𝑘 (𝑘+1) relations derived this way would contain many redundant, linearly dependent
relations, that ultimately do not add new constraints. (Note that for the regularity conditions, they cannot
actually be over-determined. Two linearly dependent constraints with different right-hand-side can
always be merged into one strict constraint.) Indeed, we see that the coefficient matrix has the property
𝑄2,𝑞 = −𝑖𝑄1,𝑞, and 𝑄𝑞,2 = 𝑖𝑄𝑞,1. Hence, for the leading 𝑘 ′ = 0 term, we have

p =
(
𝑝1, · · · 𝑝𝑘1−1, 𝑝𝑘1 = 1, 𝑝𝑘1+1 · · · 𝑝𝑘

)
:

∑︁
q

𝑄1,𝑞𝑘1

∏
𝑗≠𝑘1

𝑄𝑝 𝑗 ,𝑞 𝑗
𝑇 ′𝑚

q = 𝜌 |𝑚+𝑘 |𝐶 (𝜌2)

p =
(
𝑝1, · · · 𝑝𝑘1−1, 𝑝𝑘1 = 2, 𝑝𝑘1+1 · · · 𝑝𝑘

)
:

∑︁
q

𝑄2,𝑞𝑘1

∏
𝑗≠𝑘1

𝑄𝑝 𝑗 ,𝑞 𝑗
𝑇 ′𝑚

q = 𝜌 |𝑚+𝑘 |𝐶 (𝜌2)

⇐⇒ − 𝑖
∑︁

q
𝑄1,𝑞𝑘1

∏
𝑗≠𝑘1

𝑄𝑝 𝑗 ,𝑞 𝑗
𝑇 ′𝑚

q = 𝜌 |𝑚+𝑘 |𝐶 (𝜌2)

and changing one index in p gives the exact same condition. It follows that for 𝑘 ′ = 0, all 2𝑘 conditions
with different p are actually equivalent. The same equivalence holds for 𝑘 ′ = 𝑘 . For 𝑘 = 0 (scalar), 𝑘 = 1
(vector) and 𝑘 = 2 (rank-2 tensor, e.g. second moments formed by vectors), one can show that except for
2𝑘 linearly independent constraints, the left-hand-sides of all the rest of the constraints are either exactly
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the same or differ by a mere constant factor (e.g. −1, 𝑖), which give no new constraints. For higher
ranks, linear dependency appears in more complex and generic forms that do not seem to permit such
simplification.

An alternative approach, which results in 2𝑘 independent constraints, is to collect the terms with the
same azimuthal wavenumber together,

𝑇p =
1
2𝑘

∑︁
𝑚

𝑒𝑖𝑚𝜙

𝑘∑︁
𝑘′=0

∑︁
q

©«
∑︁

𝑆𝑙∈ (𝑆,𝑘′ )

∏
𝑗∈𝑆𝑙

𝑄𝑞 𝑗 , 𝑝 𝑗

∏
𝑗∉𝑆𝑙

𝑄𝑝 𝑗 ,𝑞 𝑗

ª®¬𝑇 ′𝑚−𝑘+2𝑘′
q ,

and for a certain azimuthal wavenumber 𝑚, we have 2𝑘 necessary and sufficient regularity conditions

𝑘∑︁
𝑘′=0

∑︁
q

©«
∑︁

𝑆𝑙∈ (𝑆,𝑘′ )

∏
𝑗∈𝑆𝑙

𝑄𝑞 𝑗 , 𝑝 𝑗

∏
𝑗∉𝑆𝑙

𝑄𝑝 𝑗 ,𝑞 𝑗

ª®¬𝑇 ′𝑚−𝑘+2𝑘′
q = 𝜌 |𝑚 |𝐶 (𝜌2), ∀p. (10)

These 2𝑘 conditions should be considered both necessary and sufficient, as each term comes from one
individual azimuthal wavenumber. In some cases, e.g. for rank-0 to rank-2 tensors, it is straightforward
to show the equivalence between conditions (9) and (10). In general, however, the equivalence does not
seem easy to establish.

4 The rank-0 tensors (scalars)

Let us consider a rank-0 tensor T, which is really just a scalar 𝑇 . In this case, 𝑘 = 0 and the summation
over 𝑘 ′ degenerates into one single term. In addition, with a length of 0, p and q can only take null arrays,
and the summation over q also vanishes into one single term of 1. The conditions (10) then simplify into

𝑇 ′𝑚 = 𝜌 |𝑚 |𝐶 (𝜌2) (11)

which is the same as given in Lewis and Bellan (1990).

5 The rank-1 tensors (vectors)

Let us now turn to a rank-1 tensor T, which is a vector. Summation of 𝑘 runs from 0 to 1. p and q take
1-indices 1 and 2. The conditions (10) involve 21 constraints, which are(

𝑇 ′𝑚−1
1 + 𝑖𝑇 ′𝑚−1

2

)
+
(
𝑇 ′𝑚+1

1 − 𝑖𝑇𝑚+1
2

)
= 𝜌 |𝑚 |𝐶 (𝜌2)(

−𝑖𝑇 ′𝑚−1
1 + 𝑇 ′𝑚−1

2

)
+
(
𝑖𝑇 ′𝑚+1

1 + 𝑇𝑚+1
2

)
= 𝜌 |𝑚 |𝐶 (𝜌2).

(12)

These two equations can be equivalently transformed into

𝑇 ′𝑚
1 + 𝑖𝑇 ′𝑚

2 = 𝜌 |𝑚+1 |𝐶 (𝜌2)
𝑇 ′𝑚

1 − 𝑖𝑇 ′𝑚
2 = 𝜌 |𝑚−1 |𝐶 (𝜌2)

Separating the azimuthal wavenumber into 𝑚 = 0, and 𝑚 ≠ 0 cases, we have their respective constraints

𝑚 = 0 :

{
𝑇 ′0

1 = 𝑇0
𝑠 = 𝜌𝐶 (𝜌2),

𝑇 ′0
2 = 𝑇0

𝜙 = 𝜌𝐶 (𝜌2),

𝑚 ≠ 0 :

{
𝑇 ′𝑚

1 = 𝑇𝑚
𝜌 = 𝜌 |𝑚 |−1𝑇𝑚0

𝜌 + 𝜌 |𝑚 |+1𝐶 (𝜌2),
𝑇 ′𝑚

2 = 𝑇𝑚
𝜙 = 𝜌 |𝑚 |−1𝑇𝑚0

𝜙 + 𝜌 |𝑚 |+1𝐶 (𝜌2),

{
𝑇𝑚0
𝜙 = 𝑖 sgn(𝑚)𝑇𝑚0

𝜌 .

(13)

Once again this is consistent with Lewis and Bellan (1990).
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6 The rank-2 tensors

Let us now look beyond scalars and vectors, and consider a rank-2 tensor T = 𝑇𝑝1𝑝2 . Summation of 𝑘
runs from 0 to 2. p and q take 2-indices, which are as follows in lexicographic order,

p, q = 11, 12, 21, 22.

The conditions (10) involves 22 = 4 constraints, which are(
𝑇 ′𝑚−2

11 − 𝑇 ′𝑚−2
22 + 𝑖𝑇 ′𝑚−2

12 + 𝑖𝑇 ′𝑚−2
21

)
+ 2

(
𝑇 ′𝑚

11 + 𝑇 ′𝑚
22

)
+
(
𝑇 ′𝑚+2

11 − 𝑇 ′𝑚+2
22 − 𝑖𝑇 ′𝑚+2

12 − 𝑖𝑇 ′𝑚+2
21

)
∼ 𝜌 |𝑚 |(

−𝑖𝑇 ′𝑚−2
11 + 𝑖𝑇 ′𝑚−2

22 + 𝑇 ′𝑚−2
12 + 𝑇 ′𝑚−2

21

)
+ 2

(
𝑇 ′𝑚

12 − 𝑇 ′𝑚
21

)
+
(
𝑖𝑇 ′𝑚+2

11 − 𝑖𝑇 ′𝑚+2
22 + 𝑇 ′𝑚+2

12 + 𝑇 ′𝑚+2
21

)
∼ 𝜌 |𝑚 |(

−𝑖𝑇 ′𝑚−2
11 + 𝑖𝑇 ′𝑚−2

22 + 𝑇 ′𝑚−2
12 + 𝑇 ′𝑚−2

21

)
− 2

(
𝑇 ′𝑚

12 − 𝑇 ′𝑚
21

)
+
(
𝑖𝑇 ′𝑚+2

11 − 𝑖𝑇 ′𝑚+2
22 + 𝑇 ′𝑚+2

12 + 𝑇 ′𝑚+2
21

)
∼ 𝜌 |𝑚 |(

−𝑇 ′𝑚−2
11 + 𝑇 ′𝑚−2

22 − 𝑖𝑇 ′𝑚−2
12 − 𝑖𝑇 ′𝑚−2

21

)
+ 2

(
𝑇 ′𝑚

11 + 𝑇 ′𝑚
22

)
+
(
−𝑇 ′𝑚+2

11 + 𝑇 ′𝑚+2
22 + 𝑖𝑇 ′𝑚+2

12 + 𝑖𝑇 ′𝑚+2
21

)
∼ 𝜌 |𝑚 |

(14)
We note immediately that the terms coming from different azimuthal wavenumbers generally differ by
only a prefactor. After algebraic manipulations (adding and substracting the relations) we come up with
four alternative conditions, which prove to be equivalent to the original system,

𝑇 ′𝑚
11 + 𝑇 ′𝑚

22 = 𝑇𝑚
𝜌𝜌 + 𝑇𝑚

𝜙𝜙 = 𝜌 |𝑚 |𝐶 (𝜌2),
𝑇 ′𝑚

12 − 𝑇 ′𝑚
21 = 𝑇𝑚

𝜌𝜙 − 𝑇𝑚
𝜙𝜌 = 𝜌 |𝑚 |𝐶 (𝜌2),

𝑇 ′𝑚
11 − 𝑇 ′𝑚

22 + 𝑖
(
𝑇 ′𝑚

12 + 𝑇 ′𝑚
21

)
= 𝑇𝑚

𝜌𝜌 − 𝑇𝑚
𝜙𝜙 + 𝑖

(
𝑇𝑚
𝜌𝜙 + 𝑇𝑚

𝜙𝜙

)
= 𝜌 |𝑚+2 |𝐶 (𝜌2),

𝑇 ′𝑚
11 − 𝑇 ′𝑚

22 − 𝑖
(
𝑇 ′𝑚

12 + 𝑇 ′𝑚
21

)
= 𝑇𝑚

𝜌𝜌 − 𝑇𝑚
𝜙𝜙 − 𝑖

(
𝑇𝑚
𝜌𝜙 + 𝑇𝑚

𝜙𝜌

)
= 𝜌 |𝑚−2 |𝐶 (𝜌2).

(15)

Now it is time to split the domain of 𝑚, Z, into intervals, so as to simplify the relations. We see that the
absolute value functions can be completely removed in each scenario if we split the domain into 𝑚 ≤ −2,
𝑚 = −1, 𝑚 = 0, 𝑚 = 1 and 𝑚 ≥ 2. The treaments of negative and positive 𝑚 are highly similar, and I
shall only write out the positive branch in detail. For 𝑚 ≥ 2, we can substract the two latter equations
in eq.(15) and obtain 𝑇𝑚

𝜌𝜙
+ 𝑇𝑚

𝜙𝜌
∼ 𝜌𝑚−2; combining this with the second equation,{

𝑇𝑚
𝜌𝜙 + 𝑇𝑚

𝜙𝜌 = 𝜌𝑚−2𝐶 (𝜌2)
𝑇𝑚
𝜌𝜙 − 𝑇𝑚

𝜙𝜌 = 𝜌𝑚𝐶 (𝜌2)
=⇒

{
𝑇𝑚
𝜌𝜙 = 𝑇𝑚0

𝜌𝜙 𝜌𝑚−2 + 𝑇𝑚1
𝜌𝜙 𝜌𝑚 + 𝜌𝑚+2𝐶 (𝜌2)

𝑇𝑚
𝜙𝜌 = 𝑇𝑚0

𝜙𝜌 𝜌
𝑚−2 + 𝑇𝑚1

𝜙𝜌 𝜌
𝑚 + 𝜌𝑚+2𝐶 (𝜌2)

and 𝑇𝑚0
𝜌𝜙 = 𝑇𝑚0

𝜙𝜌 .

Thus simultaneously we obtain the ansätze (this is in fact the required form for regularity) for 𝑇𝜌𝜙 and
𝑇𝜙𝜌, as well as a coupling condition. The second superscript on 𝑇𝑚𝑛

𝑖 𝑗
gives the index for power series

expansion in 𝑠. On the other hand, we can add the latter two equations of eq.(15) and combine with the
first equation to similarly come up with{

𝑇𝑚
𝜌𝜌 + 𝑇𝑚

𝜙𝜙 = 𝜌𝑚𝐶 (𝜌2)
𝑇𝑚
𝜌𝜌 − 𝑇𝑚

𝜙𝜙 = 𝜌𝑚−2𝐶 (𝜌2)
=⇒

{
𝑇𝑚
𝜌𝜌 = 𝑇𝑚0

𝜌𝜌 𝜌𝑚−2 + 𝑇𝑚1
𝜌𝜌 𝜌𝑚 + 𝜌𝑚+2𝐶 (𝜌2)

𝑇𝑚
𝜙𝜙 = 𝑇𝑚0

𝜙𝜙𝜌
𝑚−2 + 𝑇𝑚1

𝜙𝜙𝜌
𝑚 + 𝜌𝑚+2𝐶 (𝜌2)

and 𝑇𝑚0
𝜌𝜌 = −𝑇𝑚0

𝜙𝜙 .

Finally, we reuse the third equation in eq.(15) to establish the relation between the coefficients for the
diagonal and the off-diagonal elements. To make sure both 𝜌𝑚−2 and 𝜌𝑚 vanishes on the LHS,

𝑇𝑚0
𝜌𝜌 − 𝑇𝑚0

𝜙𝜙 + 𝑖

(
𝑇𝑚0
𝜌𝜙 + 𝑇𝑚0

𝜙𝜌

)
= 0, =⇒ 𝑇𝑚0

𝜌𝜙 = 𝑖𝑇𝑚0
𝜌𝜌

𝑇𝑚1
𝜌𝜌 − 𝑇𝑚1

𝜙𝜙 + 𝑖

(
𝑇𝑚1
𝜌𝜙 + 𝑇𝑚1

𝜙𝜌

)
= 0

These are the four regularity constraints for 𝑚 ≥ 2. With all the ansätze, it can be easily verified that
as long as the coefficients fulfill these constraints, the target terms indeed satisfy eq.(15), and thus these
ansätze and constraints are also sufficient conditions.
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Next, we take a look at the situation where 𝑚 = 1. The latter two equations now yield{
𝑇1
𝜌𝜙 + 𝑇1

𝜙𝜌 = 𝑠𝐶 (𝜌2)
𝑇1
𝜌𝜙 − 𝑇1

𝜙𝜌 = 𝑠𝐶 (𝜌2)
=⇒

{
𝑇1
𝜌𝜙 = 𝑇10

𝜌𝜙𝑠 + 𝜌3𝐶 (𝜌2)
𝑇1
𝜙𝜌 = 𝑇10

𝜙𝜌𝑠 + 𝜌3𝐶 (𝜌2).

Apparently, no constraints are required; the ansatz alone suffices to enforce the correct leading power of
𝑠. This is equally true for 𝑇𝜌𝜌 and 𝑇𝜙𝜙,{

𝑇1
𝜌𝜌 + 𝑇1

𝜙𝜙 = 𝜌1𝐶 (𝜌2)
𝑇1
𝜌𝜌 − 𝑇1

𝜙𝜙 = 𝜌1𝐶 (𝜌2)
=⇒

{
𝑇1
𝜌𝜌 = 𝑇10

𝜌𝜌𝑠 + 𝜌3𝐶 (𝜌2)
𝑇1
𝜙𝜙 = 𝑇10

𝜙𝜙𝑠 + 𝜌3𝐶 (𝜌2).

However, the last constraint still holds, that is we still need that the first-order term in 𝑠 of 𝑇1
𝜌𝜌 −𝑇1

𝜙𝜙
and

𝑖

(
𝑇1
𝜌𝜙

+ 𝑇1
𝜙𝜌

)
cancel each other out,

𝑇10
𝜌𝜌 − 𝑇10

𝜙𝜙 + 𝑖

(
𝑇10
𝜌𝜙 + 𝑇10

𝜙𝜌

)
= 0.

Finally, we arrive at the 𝑚 = 0 case.{
𝑇0
𝜌𝜙 + 𝑇0

𝜙𝜌 = 𝜌2𝐶 (𝜌2)
𝑇0
𝜌𝜙 − 𝑇0

𝜙𝜌 = 𝐶 (𝜌2)
=⇒

{
𝑇0
𝜌𝜙 = 𝑇00

𝜌𝜙 + 𝜌2𝐶 (𝜌2)
𝑇0
𝜙𝜌 = 𝑇00

𝜙𝜌 + 𝜌2𝐶 (𝜌2)
and 𝑇00

𝜌𝜙 = −𝑇00
𝜙𝜌.{

𝑇0
𝜌𝜌 + 𝑇0

𝜙𝜙 = 𝐶 (𝜌2)
𝑇0
𝜌𝜌 − 𝑇0

𝜙𝜙 = 𝜌2𝐶 (𝜌2)
=⇒

{
𝑇0
𝜌𝜌 = 𝑇00

𝜌𝜌 + 𝜌2𝐶 (𝜌2)
𝑇0
𝜙𝜙 = 𝑇00

𝜙𝜙 + 𝜌2𝐶 (𝜌2)
and 𝑇00

𝜌𝜌 = 𝑇00
𝜙𝜙 .

The third and the fourth equation in eq.(15) give the relations
𝑇00
𝜌𝜌 − 𝑇00

𝜙𝜙 + 𝑖

(
𝑇00
𝜌𝜙 + 𝑇00

𝜙𝜌

)
= 0

𝑇00
𝜌𝜌 − 𝑇00

𝜙𝜙 − 𝑖

(
𝑇00
𝜌𝜙 + 𝑇00

𝜙𝜌

)
= 0

which are automatically satisfied given the previous ansätze. The negative 𝑚 scenarios are also similarly
derived. In the end, the required leading order and the constraints are summarized as follows

𝑚 = 0 :


𝑇0
𝜌𝜌 = 𝑇00

𝜌𝜌 + 𝜌2𝐶 (𝜌2)
𝑇0
𝜙𝜙 = 𝑇00

𝜙𝜙 + 𝜌2𝐶 (𝜌2)
𝑇0
𝜌𝜙 = 𝑇00

𝜌𝜙 + 𝜌2𝐶 (𝜌2)
𝑇0
𝜙𝜌 = 𝑇00

𝜙𝜌 + 𝜌2𝐶 (𝜌2)

,

{
𝑇00
𝜌𝜌 = 𝑇00

𝜙𝜙

𝑇00
𝜌𝜙 = −𝑇00

𝜙𝜌

|𝑚 | = 1 :


𝑇𝑚
𝜌𝜌 = 𝑇𝑚0

𝜌𝜌 𝑠 + 𝜌3𝐶 (𝜌2)
𝑇𝑚
𝜙𝜙 = 𝑇𝑚0

𝜙𝜙 𝑠 + 𝜌3𝐶 (𝜌2)
𝑇𝑚
𝜌𝜙 = 𝑇𝑚0

𝜌𝜙 𝑠 + 𝜌3𝐶 (𝜌2)
𝑇𝑚
𝜙𝜌 = 𝑇𝑚0

𝜙𝜌 𝑠 + 𝜌3𝐶 (𝜌2)

,

{
𝑇𝑚0
𝜌𝜙 + 𝑇𝑚0

𝜙𝜌 = 𝑖 sgn(𝑚)
(
𝑇𝑚0
𝜌𝜌 − 𝑇𝑚0

𝜙𝜙

)

|𝑚 | ≥ 2 :



𝑇𝑚
𝜌𝜌 = 𝑇𝑚0

𝜌𝜌 𝜌 |𝑚 |−2 + 𝑇𝑚1
𝜌𝜌 𝜌 |𝑚 | + 𝜌 |𝑚 |+2𝐶 (𝜌2)

𝑇𝑚
𝜙𝜙 = 𝑇𝑚0

𝜙𝜙𝜌
|𝑚 |−2 + 𝑇𝑚1

𝜙𝜙𝜌
|𝑚 | + 𝜌 |𝑚 |+2𝐶 (𝜌2)

𝑇𝑚
𝜌𝜙 = 𝑇𝑚0

𝜌𝜙 𝜌 |𝑚 |−2 + 𝑇𝑚1
𝜌𝜙 𝜌 |𝑚 | + 𝜌 |𝑚 |+2𝐶 (𝜌2)

𝑇𝑚
𝜙𝜌 = 𝑇𝑚0

𝜙𝜌 𝜌
|𝑚 |−2 + 𝑇𝑚1

𝜙𝜌 𝜌
|𝑚 | + 𝜌 |𝑚 |+2𝐶 (𝜌2)

,



𝑇𝑚0
𝜌𝜌 = −𝑇𝑚0

𝜙𝜙

𝑇𝑚0
𝜌𝜙 = 𝑇𝑚0

𝜙𝜌

𝑇𝑚0
𝜌𝜙 = 𝑖 sgn(𝑚)𝑇𝑚0

𝜌𝜌

𝑇𝑚1
𝜌𝜙 + 𝑇𝑚1

𝜙𝜌 = 𝑖 sgn(𝑚)
(
𝑇𝑚1
𝜌𝜌 − 𝑇𝑚1

𝜙𝜙

)
.

(16)
Similar constraints have been derived in Holdenried-Chernoff (2021) by comparing visually the form of
the components of dyadic BB in polar coordinates. The ansätze are exactly the same, but two of the
relations, namely the constraint involving𝑇𝑚0

𝜌𝜙
, 𝑇𝑚0

𝜙𝜌
, 𝑇𝑚0

𝜌𝜌 and𝑇𝑚0
𝜙𝜙

at |𝑚 | = 1, and the constraint involving
𝑇𝑚1
𝜌𝜙

, 𝑇𝑚1
𝜙𝜌

, 𝑇𝑚1
𝜌𝜌 and 𝑇𝑚1

𝜙𝜙
at |𝑚 | > 1, are previously missing in Holdenried-Chernoff (2021).
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7 Remarks on higher rank tensors

In the case of rank-0, rank-1 and rank-2 tensors, we see that apart from a leading prefactor (𝜌 |𝑚 | , 𝜌 |𝑚 |−1

and 𝜌 |𝑚 |−2 except for special treatment of low azimuthal wavenumbers), the Fourier coefficients are
coupled in the lowest orders of 𝜌 up to the 0-th, 1-st and 2-nd order. Intuitively, we can reasonably
presume that for rank-𝑘 tensors, the Fourier coefficients of the tensor components in polar coordinates
are generally coupled up to the 𝑘-th order.

While the previous derivations on low-rank tensors are relatively straightforward, because the original
conditions can be easily transformed into such an equivalent form that the terms coming from different
azimuthal wavenumbers are decoupled, the same is trickier for higher ranks. We only need to write out
the first of the 23 = 8 conditions for rank-3 tensor to illustrate the challenge:(

𝑇 ′𝑚−3
111 + 𝑖𝑇 ′𝑚−3

112 + 𝑖𝑇 ′𝑚−3
121 − 𝑇 ′𝑚−3

122 + 𝑖𝑇 ′𝑚−3
211 − 𝑇 ′𝑚−3

212 − 𝑇 ′𝑚−3
221 − 𝑖𝑇 ′𝑚−3

222

)
+
(
3𝑇 ′𝑚−1

111 + 𝑖𝑇 ′𝑚−1
112 + 𝑖𝑇 ′𝑚−1

121 + 𝑇 ′𝑚−1
122 + 𝑖𝑇 ′𝑚−1

211 + 𝑇 ′𝑚−1
212 + 𝑇 ′𝑚−1

221 + 𝑖3𝑇 ′𝑚−1
222

)
+
(
3𝑇 ′𝑚+1

111 − 𝑖𝑇 ′𝑚+1
112 − 𝑖𝑇 ′𝑚+1

121 + 𝑇 ′𝑚+1
122 − 𝑖𝑇 ′𝑚+1

211 + 𝑇 ′𝑚+1
212 + 𝑇 ′𝑚+1

221 − 𝑖3𝑇 ′𝑚+1
222

)
+
(
𝑇 ′𝑚+3

111 − 𝑖𝑇 ′𝑚+3
112 − 𝑖𝑇 ′𝑚+3

121 − 𝑇 ′𝑚+3
122 + 𝑖𝑇 ′𝑚+3

211 − 𝑇 ′𝑚+3
212 − 𝑇 ′𝑚+3

221 + 𝑖𝑇 ′𝑚+3
222

)
= 𝜌 |𝑚 |𝐶 (𝜌2)

We have already shown that the 𝑚 − 3 terms in all 8 conditions differ only by a prefactor; the same holds
for all 𝑚 + 3 terms. However, no such relations are available for the middle terms (𝑚 − 1, 𝑚 + 1). It is
therefore not apparent whether it is possible to transform the system into a form without inter-azimuthal-
wavenumber coupling (e.g. there might be coupling between 𝑚 − 1 and 𝑚 + 1). Even if it is possible,
nontrivial linear combination of multiple equations is needed, instead of simple one-on-one addition and
substraction.

8 Search for a tensor basis

[In progress, not sure if it is going to work out.] Given the complexity of the coupling conditions for
higher-rank tensors, it is desirable if we can find a set of basis functions that automatically satisifies
the regularity conditions. Such parameterizations would simplify the modelling of the physical field by
removing the additional constraints.

There is a known approach for deriving vector basis, which uses the Helmholtz decomposition,

A = ∇𝑉 + ∇ ×ψ. (17)

Specifically, for vectors constrained to the 2-D plane 𝑂𝑥𝑦, we can write it using the surface operators,

A = ∇𝑒𝑉 + ∇ × 𝜓ẑ (18)

reducing the vector into two scalars. If we have a valid basis for the scalars, we then can derive the
valid basis for the vector. This is inspired by the derivation of vector spherical harmonics, where the
Helmholtz decomposition of a vector field in 3-D is written using the surface operators on a sphere,

A = ∇𝑠𝑉 + ∇𝑠 × 𝜓r̂ + 𝐴𝑟 r̂.

Since the spherical harmonics 𝑌𝑚
𝑙
(𝜃, 𝜙) form an orthogonal basis on a sphere, the corresponding basis

for a vector field on a sphere can be derived,

P𝑚
𝑙 = 𝑌𝑚

𝑙 r̂, B𝑚
𝑙 = ∇𝑠𝑌

𝑚
𝑙 , C𝑚

𝑙 = r̂ × ∇𝑠𝑌
𝑚
𝑙 .

Due to the Helmholtz decomposition, these are indeed a complete basis. Furthermore, quite fortunately,
these basis functions are also mutually orthogonal with respect to the inner product on the sphere, and
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hence form an orthogonal basis without further manipulations. The same thing is tricky for the unit disk /
unit circle, as the scalar basis does not seem to have such desirable property. Indeed, a similar procedure
has been carried out by Zhao and Burge (2007, 2008). They show that one can indeed find a vector basis
for the unit circle using the Helmholtz decomposition and Zernike polynomials as the basis for the scalar
potentials. The basis are then formed by

∇𝑒𝑍
𝑚
𝑛 (𝜌, 𝜙), ∇𝑒 × 𝑍𝑚

𝑛 (𝜌, 𝜙)ẑ.

However, these vectors are not orthogonal. The authors then applied Gram-Schmidt orthogonalization
to obtain an orthogonal set of basis formed by ∇𝑒𝑍

𝑚
𝑛 . The same coefficients also orthogonalizes

∇𝑒 × 𝑍𝑚
𝑛 (𝜌, 𝜙)ẑ. The silver lining in all these efforts is that at least the coefficients are sparse, i.e. one

only needs two Zernike polynomials to combine into polynomials whose gradients are orthogonal in the
unit circle. But even then, the two sets are not mutually orthogonal. There are some selected basis that
are shared between the two families.

[Two obstacles stand in the way for deriving a basis for e.g. rank-2 tensors]. First, we need
an equivalence to Helmholtz decomposition, but for rank-2 tensors, instead of vectors. The natural
candidate is the so-called Hodge decomposition (see e.g. Bhatia et al. 2013). This involves some exterior
algebra, and I don’t know what a 3-form could be in 2-D space. Second, it remains to be seen what basis to
use for the scalar or vector fields, and whether it is possible to perform Gram-Schmidt orthogonalization
on the tensor basis with finite terms.
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