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Abstract

Time-varying electromagnetic field observed on the ground or at a spacecraft consists of contri-

butions from inducing electric currents, as well as induced currents in the conductive Earth’s

interior by virtue of electromagnetic induction. Knowledge about the spatio-temporal struc-

ture of inducing currents is a key component in ionospheric and magnetospheric studies and is

also needed in space weather hazard evaluation, whereas the induced currents are sensitive to

the Earth’s subsurface electrical conductivity distribution and allow us to probe this physical

property. This thesis presents an approach that reconstruct the inducing source and subsurface

conductivity structures simultaneously, preserving the consistency between the inducing and

induced currents by exploiting the physical link between them. To achieve this, the underlying

inverse problem is formulated as a separable nonlinear least squares (SNLS) problem, where

the inducing current and the subsurface conductivity enter as linear and non-linear model un-

knowns, respectively. The SNLS problem is solved with the variable projection method and

compared with other conventional approaches. The feasibility of this approach is demonstrated

via experiments where the ionospheric and magnetospheric currents along with a 1-D average

mantle conductivity distribution are simultaneously reconstructed from the ground magnetic

observatory data.

Parts of this thesis will be submitted as an article to Earth, Planets and Space and can be

referred to as:

Min, J. and Grayver, A., Simultaneous estimation of inducing source field and mantle electrical

conductivity using the variable projection approach, Earth, Planets and Space, in preparation.
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1. Introduction

Time variations of magnetic field that we observe on the ground or at a spacecraft represent a

superposition of the inducing (primary) and the induced components. There is a large interest

in knowing both the inducing and the induced components of the field as accurate as possible.

On the one hand, knowledge about spatio-temporal variability of the inducing field constrains

the state of source currents in the ionosphere and the magnetosphere (Yamazaki and Maute,

2017; Balasis and Egbert, 2006; Tsyganenko, 2019), which in turn represents a crucial input

for accurate geomagnetic field modelling (Maus and Weidelt, 2004; Finlay et al, 2017) and

space weather hazard evaluation (Pulkkinen et al, 2003; Kelbert, 2020; Juusola et al, 2020).

On the other hand, relation between the inducing and the induced field variations, governed by

Maxwell’s equations, can be used to probe the electrical conductivity distribution in the Earth’s

subsurface (Olsen, 1999a; Kuvshinov and Olsen, 2006; Kelbert et al, 2009). However, separation

of the magnetic field into the inducing and the induced components is often non-trivial owing

to their non-linear relationship that depends on the 3-D distribution of electrical conductivity

in the Earth’s interior. The goal here is to elaborate on this problem further.

To keep the study concise and focused, we make several assumptions that are implied in the

derivations and discussions that follow. First, we concentrate on time-variations with periods

longer than a few hours, which is beyond the band where a simple plane-wave source assumption

is valid (this assumption can be used to model external source fields (Kelbert and Lucas, 2020)

and used in the magnetotelluric method (Chave and Jones, 2012) for probing the subsurface

electrical conductivity). Second, we assume that field variations are due to the extraneous

electric currents and the corresponding electromagnetic response from the conductive Earth’s

mantle. In other words, the contributions from all other magnetic field sources, such as the

crust or the core, are absent in the data (this is never true in practice, but these problems

are beyond the scope of our study). Further, the extraneous electric currents are assumed to

have their origin in the ionosphere and magnetosphere. By this, we exclude the ocean-induced

electromagnetic fields, which require dedicated modelling and inversion approaches (Velímský

et al, 2018).

In the most general form, the extraneous source structure needs to be parameterized with spa-

tially heterogeneous functions and estimated from the data along with the subsurface electrical

conductivity distribution by solving a corresponding inverse problem. However, joint estimation
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of conductivity and external field structures represents a notoriously difficult task. Alternative

methods have thus been used to approach the same problem.

Conventionally, the Gauss method has been used to separate the magnetic field into time-

series of spherical harmonic (SH) coefficients of internal and external origins (Backus et al,

1996). By relating the internal and the external SH coefficients, one can estimate a transfer

function between them and perform the inversion in terms of subsurface electrical conductivity

(Olsen, 1999a; Schmucker, 1999; Kuvshinov, 2012) or fit the time-series of SH coefficients directly

(Velímský and Knopp, 2021). However, this approach is only applicable to potential fields where

inducing field contribution is external to the observer. Moreover, due to sparse measurements,

one is typically limited to using a small set of spherical harmonics to describe the inducing and

induced parts of the field (Kuvshinov et al, 2021; Velímský and Knopp, 2021).

Recognizing these limitations, a number of recent studies (Koch and Kuvshinov, 2013; Sun

et al, 2015; Guzavina et al, 2019; Egbert et al, 2021; Zhang et al, 2022) have adopted an

alternative strategy where the source structure is estimated given some prior knowledge about

the subsurface conductivity. With this estimated source structure, the inversion in terms of

subsurface conductivity is subsequently performed and the updated conductivity model can in

turn be used to re-estimate the source coefficients. This approach allows for a more general

ansatz to describe the source geometry (Zenhäusern et al, 2021; Egbert et al, 2021; Grayver

et al, 2021) and enables derivation of alternative families of transfer functions (Püthe and

Kuvshinov, 2014; Guzavina et al, 2019), which are not limited to the potential field assumption.

Additionally, one is able to incorporate the prior knowledge on the induction effects due to the

ocean and marine sediments (Grayver et al, 2021). Therefore, determination of the inducing

source field and the mantle conductivity is performed in an alternating manner on the two

separate model spaces (hereinafter termed "alternating approach"). Such separate estimation of

the two model spaces is assumed to result in progressively refined knowledge of both the source

and the conductivity models.

In this thesis, this idea is developed further and the problem is posed in a form that allows us to

simultaneously estimate the source and the subsurface conductivity directly from the data. Since

the model space consists of one part (i.e. inducing source currents), upon which the dependence

of the observable is linear, and another part (i.e. subsurface electrical conductivity), which enters

the objective in a non-linear manner, the underlying inverse problem (under squared loss) falls

into the category of a special optimization task known as Separable Nonlinear Least Squares

(SNLS) problem.

3



1. Introduction

It will be shown in this thesis that the naive "alternating approach" described above is the

simplest way of solving the SNLS problem, although it may lack consistency and suffer from a

limited convergence. There exist more efficient ways of solving the SNLS problem. In particular,

the variable projection method (hereafter referred to as VP) has been proposed as an optimal

method for solving SNLS problems that benefits from both computational efficiency and fast

convergence (Golub and Pereyra, 1973, 2003). In essence, VP exploits the linear dependency

in one part of the model and estimates this part via linear least squares at each iteration, thus

effectively projecting the complete model space onto a reduced subspace for efficient non-linear

optimization.

The advantage of variable projection naturally appeals to a number of geophysical inverse

problems where the unknown parameters intrinsically constitute separable least squares. Such

behaviour is typical of seismic wave propagation and electromagnetic induction, where source

characterization is linearly filtered by a medium response, depending non-linearly on medium

properties. In the last decade, this algorithm has been recognized in seismology as an efficient

way to invert for velocity structure while simultaneously characterizing the source (Rickett,

2013; De Ridder and Maddison, 2018), the source-related calibration parameters (Li et al,

2013), or both the source and the receiver factors (Hu et al, 2021). Despite an early conceptual-

ization (Fainberg et al, 1990), this method, to our knowledge, has not yet been well elaborated

in the context of electromagnetic induction problems, where the merit of VP is potentially

much more pronounced: the full model inversion including the source and conductivity, which

is prohibitive due to high dimensionality and non-linearity, becomes tractable in light of linear

variable projection. Here an application of VP to a problem of electromagnetic induction sound-

ing is presented. Through the experiments that follow, it is demonstrated that not only does

this approach enable simultaneous estimation of the inducing field structure and the electrical

conductivity by using a natural physical link between them, but it also provides insights into

the interplay between determination of inducing field and conductivity models in a consistent

fashion.
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2. Methods

Electromagnetic (EM) field variations are governed by Maxwell’s equations, which in the fre-

quency domain read
∇×E = −iωB,

1

µ0
∇×B = σE+ j,

(2.1)

where σ(r) ∈ R denotes electrical conductivity of medium, B(r, ω;σ) and E(r, ω;σ) the magnetic

and electric fields, respectively, ω the angular frequency and r the position vector. j(r, ω) gives

the density of the extraneous (impressed) currents, which are assumed to originate within the

ionosphere and magnetosphere, separated from the solid Earth by a layer of insulating air. We

take µ = µ0 and ε = ε0 for the magnetic permeability and electric permittivity, respectively,

and neglect the displacement current since ωε0 ≪ σ for the frequency band of interest. Here

we adopt the following convention for the Fourier transform

X(ω) = F [x(t)] =
1√
2π

∫ +∞

−∞
x(t)e−iωt dt,

x(t) = F−1[X(ω)] =
1√
2π

∫ +∞

−∞
X(ω)e+iωt dω.

(2.2)

The system of Maxwell’s equations (2.1) is linear with respect to the current density term j.

Thus, the magnetic field due to an arbitrary distribution of the current density can be formally

expressed as

B(r, ω;σ) =

∫
Ω
G(r, r′, ω;σ) · j(r′, ω) dr′, (2.3)

where G is the Green’s tensor of the medium and Ω is the volume occupied by the extraneous

currents. A corresponding time-domain counterpart contains a temporal convolution, and has

the form

B(r, t;σ) =

∫ ∞

−∞

∫
Ω
G(r, r′, t− t′;σ) · j(r′, t′) dr′ dt′. (2.4)

Eqs. 2.3-2.4 show that the magnetic field is related to the source by a linear operator, which

is a non-linear functional of the electrical conductivity. The equivalent for the electric field is

straightforward, but is omitted because only magnetic field observations are considered in this

study. The forward modelling can thus be expressed in a concise algebraic form

dmod(σ, c) = F(σ) c, (2.5)
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2. Methods

where dmod is the modelled data vector, c is an inducing source vector, and F(σ) is a func-

tional of σ that links the field to the extraneous currents. The specific form of F(σ) depends

on the specific discretization and parameterization of σ and j, but the general algebraic form

accommodates a whole set of modelling approaches, among which the forward modellings de-

scribed by Eqs. 2.3 and 2.4 are just two specific implementations. Instead of estimating only

the electrical conductivity σ(r), as is often the case in EM induction sounding, our goal is to

simultaneously estimate the unknown variables consisting of both σ(r) and extraneous currents

c from observations of the magnetic field taken at specified locations and times. To achieve this

goal, we seek the combination of σ(r) and c that minimizes the data misfit

χ2 = d
(
dobs,dmod(σ, c)

)
= d

(
dobs,F(σ) c

)
, (2.6)

where dobs is the observational data vector, constituted by magnetic field observations, and

d(·, ·) denotes the distance metric on the corresponding Hilbert space. A popular choice for

such metric in EM induction soundings is the distance induced by the vector norm inversely

weighted by the data covariance,

χ2 =
1

2

(
dobs − dmod

)H
C−1

d

(
dobs − dmod

)
=

1

2

(
dobs − F(σ) c

)H
C−1

d

(
dobs − F(σ) c

)
,

(2.7)

where Cd is the data covariance matrix. The superscript H denotes the Hermitian transpose

of the matrix or vector, as the data vector may be complex. In absence of co-variances, the

data samples are assumed to be mutually independent, in which case Cd = diag
(
s2i
)
, where s2i

is the variance of the i-th data. Introducing W = C
−1/2
d = diag(s−1

i ), the data misfit can be

rewritten as the squared L2 norm of the weighted residual

χ2 =
1

2
∥rw∥22 =

1

2
∥Wr∥ =

1

2

∥∥∥W (
dobs − F(σ) c

)∥∥∥2
2
=

1

2

∥∥∥dobs
w − Fw(σ) c

∥∥∥2
2
. (2.8)

Here, ∥ · ∥2 denotes the L2 norm, r = dobs − F(σ)c is the residual vector, rw = Wr, dw = Wd

and Fw = WF are the weighted forms of the residual, the data vector and the linear operator,

respectively. Hereinafter we shall drop the superscript of the observational data vector and write

d = dobs for brevity. To mitigate the inherent non-uniqueness of the problem, a regularization

term λL(σ) is added to the objective function, where L(·) is the penalty function, and λ is the

regularization strength. Here we consider the penalty function that penalizes the L2 norm of

model complexity, given by L(σ) = 1
2∥Γσ∥

2
2, where Γ is known as the Tikhonov matrix. The
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2.1. Joint model space inversion

full optimization problem is then given by

min
σ,c

1

2
∥dw − Fw(σ) c∥22 +

λ

2
∥Γσ∥22. (2.9)

2.1. Joint model space inversion

A naive way to tackle the problem (2.9) is to consider optimization in the joint model space.

The model is then stated as a concatenated vector m = [σT , cT ]T . Adopting the notations in

Hong et al (2017), the Jacobian of the misfit term (Eq. 2.8) is correspondingly given as

Jm = [Jσ,Jc], (2.10)

where Jσ and Jc are the partial derivatives defined as

Jc =
∂rw
∂c

= −Fw(σ),

Jσ =
∂rw
∂σ

= −DFw(σ) c = DJc c.

(2.11)

In what follows, DA is used to denote the derivative of A with respect to σ, where A is a

functional of σ. In its discrete form where A ∈ Ci1×i2×···il , the result DA is a tensor of order

l + 1, and the last dimension gives the differentiation component. More explicitly,

(DA(x))i1i2···il+1
=

∂Ai1i2···il
∂xil+1

. (2.12)

For l ≥ 2, matrix multiplications involving DA are always assumed to be performed on the

leading 2 dimensions. In Gauss-Newton algorithm, the Hessian (i.e. the second order derivative)

of the data misfit can be approximated using only the Jacobian of the residual vector

Hm ≈ JH
mJm =

JH
σ Jσ JH

σ Jc

JH
c Jσ JH

c Jc

 . (2.13)

Adding the regularization term, we come up with the model update for the joint model space,

which is given by the linear system

JH
σ Jσ + λΓTΓ JH

σ Jc

JH
c Jσ JH

c Jc

∆σ

∆c

 = −

JH
σ rw

JH
c rw

 . (2.14)
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2. Methods

The linear system has a total dimension of Mσ + Mc, where Mσ and Mc are the dimensions

of the models σ and c, respectively. In geomagnetic deep sounding problems the inducing field

parameterization usually occupies much higher dimensions than the conductivity model due to

its temporal dependency, i.e. Mc ≫ Mσ. Seeking a solution to the stated problem directly in

the joint model space hence induces a fully non-linear optimization in a high-dimensional space,

a problem formidable to tackle. Using Schur complement, however, it is possible to formally

separate the solved model updates of system 2.14 into the updates on separate models. Invoking

the invertibility of JH
c Jc, the model update on σ is formally given by

[
Re

[
JH
σ

(
I− JcJ

†
c

)
Jσ

]
+ λΓTΓ

]
∆σ = −Re

[
JH
σ

(
I− JcJ

†
c

)
rw

]
, (2.15)

where A† denotes the Moore-Penrose pseudoinverse of matrix A. The real parts of the Hessian

and the gradient are taken to enforce real update on σ. After ∆σ is solved, the model c is

similarly updated at each iteration via

[
JH
c Jc

]
∆c = −JH

c (rw + Jσ∆σ) . (2.16)

The invertibility of JH
c Jc is a well justified assumption in the context of geomagnetic field

estimation. As the equation Jc c ≃ −dw gives the linear system for estimating the inducing

source currents, the conditioning of JH
c Jc is associated with the well-posedness of the inducing

source estimation. In practice, the problem of inducing source estimation is usually a well-posed

problem providing adequate observational coverage and appropriate source paramterization,

and so hereinafter we shall always assume that JH
c Jc = FH

w (σ)Fw(σ) is invertible, and the

pseudoinverse can be explicitly written as J†
c = (JH

c Jc)
−1JH

c .

2.2. Variable projection approach

As already mentioned, the magnetic field data is a linear functional of the extraneous currents

parameterized as c, but a non-linear functional of the medium electrical conductivity σ(r).

This particular structure of the inverse problem with data misfit defined in Eq. 2.8 makes it an

example of the so-called separable non-linear least squares (SNLS) and allows us to adopt more

efficient methods to solve it.

Variable projection has been first proposed by Golub and Pereyra (1973) as an optimization

method for solving SNLS problems. Exploiting the linear dependency on c, at each given

conductivity model σ̂, the best-fitting linear part can be obtained via a linear regression ĉ =

8



2.2. Variable projection approach

F†
w(σ̂)dw. With the linear regression at each iteration, the optimization is then effectively

"constrained" to a reduced, nonlinear model space

min
σ

1

2
∥dw − Fw(σ) ĉ(σ)∥22 +

λ

2
∥Γσ∥22

=min
σ

1

2

∥∥∥dw − Fw(σ)F
†
w(σ)dw

∥∥∥2
2
+

λ

2
∥Γσ∥22

=min
σ

1

2

∥∥∥P⊥
Fw

(σ)dw

∥∥∥2
2
+

λ

2
∥Γσ∥22,

(2.17)

where P⊥
Fw

= I−FwF
†
w is the projector onto the orthogonal complement of the range of Fw(σ).

The minimum to the non-linear optimization problem in Eq. 2.17 can be found by using either

a gradient-based or a Newton-based optimization method. In these cases, the update on the

nonlinear model involves evaluation of the Fréchet derivatives with respect to the nonlinear

parameters. In turn, this requires us to incorporate the implicit dependency of c on σ. Golub

and Pereyra (1973) derived the expressions for the gradient of the objective function and the

Jacobian of the residual vector in terms of pseudoinverses and derivatives of the linear operator

Fw. With the notations defined in Eq. 2.12, the linear projection can also be stated as ĉ =

−J†
c dw, and the orthogonal projector is given by P⊥

Fw
= I − JcJ

†
c = P⊥

Jc
. Note that the two

explicit Jacobians are coupled in model space (i.e. Jσ and Jc are dependent upon c and σ,

respectively). This will be clearly seen in the case of variable projection, where the complete

Jacobian of the misfit term reformulated with variable projection (Eq. 2.17) is given by

J(σ, ĉ(σ)) = Drw = Jσ + JcDĉ = Jσ − JcDJ
†
c dw. (2.18)

Invoking the derivative of pseudoinverse (see Golub and Pereyra 1973 for derivation details),

DA† = −A†DAA† +A†
(
A†

)H
(DA)H P⊥

A +
(
P⊥

AH

)H
(DA)H

(
A†

)H
A†, (2.19)

the complete Jacobian of the variable-projected system can hence be reiterated and expressed

solely in terms of Jσ, Jc together with its derivative and pseudoinverse

J(σ, ĉ(σ)) = Jσ − Jc

(
−J†

c DJc J
†
c + Jc

†(Jc
†)H(DJc)

HP⊥
Jc

+
(
P⊥

JH
c

)H
(DJc)

H(J†
c)

HJc
†
)
dw

= Jσ − JcJc
†DJc ĉ− JcJc

†(Jc
†)H(DJc)

HP⊥
Jc
dw + Jc

(
P⊥

JH
c

)H
(DJc)

H(Jc
†)H ĉ

= Jσ − JcJ
†
cJσ −

(
J†
c

)H
(DJc)

H P⊥
Jc
dw.

(2.20)

The last step uses the fact that AA†(A†)H =
(
AA†)H (A†)H =

(
A†AA†)H =

(
A†)H and
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2. Methods

A
(
P⊥

AH

)H
= A

(
I−AH(A†)H

)H
= A

(
I−A†A

)
≡ 0. Part of the dependency of c upon

σ, namely the 3rd term in Eq. 2.19, has no contribution to the complete Jacobian since it is

perpendicular to Jc. Therefore the complete Jacobian is simply

J(σ, ĉ(σ)) = Jσ − JcJ
†
cJσ −

(
J†
c

)H
(DJc)

H P⊥
Jc
dw

= Jσ − JcJ
†
cJσ −

(
J†
c

)H
(DJc)

H rw.

(2.21)

Note that if an inverse problem were conducted solely in the space of σ, then only the the

first term, namely Jσ, would be present. The trailing two terms involve the dependency of the

source estimate on the change in subsurface conductivity, confining the model updates of σ to

the hyperplane defined by the regression of c. Reintroducing linear operators via Eq. 2.11, we

arrive at the expression for the Jacobian of the residual vector

J = P⊥
Jc
Jcĉ−

(
P⊥

Jc
DJcJ

†
c

)H
dw

= −P⊥
Fw

DFw F†
wdw − (P⊥

Fw
DFw F†

w)
Hdw.

(2.22)

Accordingly, the gradient of the misfit function reads

gradχ2 = Dχ2 = Re
[
JHrw

]
= −Re

[(
DFw F†

wdw

)H
P⊥

Fw
dw

]
= Re

[
JH
σ rw

]
. (2.23)

The inversion scheme that calculates Jacobian via Eq. 2.22 is hereinafter referred to as the

full-VP scheme. In the case of a 1-D radial conductivity model, the calculation of DFw is

cheap and can often be calculated semi-analytically. For a general 3-D conductivity model, the

evaluation of DFw is often the resource demanding part of the inversion. Even when the adjoint

method (Pankratov and Kuvshinov, 2010; Egbert and Kelbert, 2012) can be used such that each

evaluation of the DFw term requires one forward and one adjoint solution for given inducing

sources, 3-D electromagnetic modelling itself remains very computationally demanding. It is

therefore desirable to explore approximations that allow for fewer evaluations of DFw.

Two such approximations have been proposed by Ruhe and Wedin (1980). One option is to

drop the last term in Eq. 2.21, effectively dropping the 2nd term in Eq. 2.22, yielding

J = −P⊥
Fw

DFw F†
wdw = P⊥

Fw
Jσ. (2.24)

We adopt the terminology used by Hong et al (2017) and refer to this as the VP-RW2 scheme.

The dropped term contains higher-order derivatives of the residual vector, and is considered

a higher-order refinement. This scheme retains high convergence rate and accuracy, while
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2.2. Variable projection approach

outperforming the full-VP in terms of computational efficiency (Ruhe and Wedin, 1980; O’Leary

and Rust, 2013). The second option is to drop both the 2nd and the 3rd terms in Eq. 2.21,

leading to the very simple form

J = −DFw F†
wdw = Jσ, (2.25)

hereinafter referred to as the VP-RW3 scheme. This is equivalent to assuming fixed inducing

currents (i.e. Dĉ = 0) at each iteration while searching for updates on the conductivity structure.

This is in contrast to both full-VP and VP-RW2 schemes, where Jacobian contains additional

information on the implicit feedback of the source.

Eqs. 2.22, 2.24 and 2.25 define the first order Fréchet derivatives with the variable projection.

As can be seen from the derivations, these three variants are closely related in the scope of

variable projection but have different levels of approximation. Despite poor performance of the

VP-RW3 scheme previously reported by Hong et al (2017) in matrix factorization problems, we

chose to consider this scheme here, particularly because of its resemblance to what we call the

"alternating approach", which is revisited in the next section under the framework of variable

projection.

As alluded to, the VP method plays the role of a surrogate method for joint model space

inversion. This connection between the two approaches can be stated more explicitly. To

avoid higher order derivatives, we again consider the model update proposed by Gauss-Newton

algorithm, where the Hessian is approximated as H ≈ Re[JHJ]. The model update can be

expressed as (
Re

[
JHJ

]
+ λΓTΓ

)
δσ = −Dχ2. (2.26)

Plugging in Eqs. 2.22 to 2.25, the model updates take the form

[
Re

[
JH
σ P⊥

Jc
Jσ + rHwDJc

(
JH
c Jc

)−1
DJH

c rw

]
+ λΓTΓ

]
∆σ = −Re

[
JH
σ rw

]
(full−VP),[

Re
[
JH
σ P⊥

Jc
Jσ

]
+ λΓTΓ

]
∆σ = −Re

[
JH
σ rw

]
(VP− RW2),[

Re
[
JH
σ Jσ

]
+ λΓTΓ

]
∆σ = −Re

[
JH
σ rw

]
(VP− RW3).

(2.27)

Immediately the resemblance between Eq. 2.15 and the VP-RW2 scheme in Eq. 2.27 is notice-

able. The two linear systems share the same left-hand-side terms, only differing from each other

in the right-hand-side term, i.e. the gradient. In particular, when the current model in the joint

model space has the form m = [σ, c] = [σ,−J†
cdw], we will have the orthogonal property of the
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2. Methods

residual vector with respect to Jc

JH
c rw = 0 =⇒

(
I− JcJ

†
c

)
rw = rw. (2.28)

The linear system for joint model space optimization (Eq. 2.15) is then effectively the same as

VP-RW2 (Eq. 2.27). We therefore conclude that given the same conductivity model σ and an

optimized source model c = −J†
c(σ)dw, the conductivity model update proposed by VP-RW2

is exactly the same as that proposed by the joint model space inversion. It is, however, worthy

of noticing that the proposed linear update in joint model space inversion (Eq. 2.16) does not

yield optimized update on c. In contrast, the VP methods conduct regression at every iteration,

which guarantees that the choice of c at current σ is optimal. Therefore, starting from the same

σ, c = −J†
cdw combinations, VP-RW2 is guaranteed to propose a model with a lower misfit,

without resorting to more complex conductivity models.

As a final remark, we observe that the gradient Dχ2 always has the same expression as in Eq.

2.22, regardless of the approximation used for constructing the Jacobian. This is due to the

fact that as ĉ = F†
wdw guarantees that the source parameters minimize the squared misfit of

the data, the residual automatically lives in the orthogonal complement of the linear operator,

and only manifest itself through Jσ. In other words, as long as the current source estimation

minimizes the data misfit, gradients do not sense the implicit feedback of the source, but always

view the source as if it were a fixed ground truth, as has been noticed by Aravkin and Leeuwen

(2012). Therefore, purely gradient-based optimization schemes are not affected by the choice

of the variant of VP. Optimization schemes utilizing higher order information, such as Gauss-

Newton algorithm and Levenberg-Marquardt algorithms, are however different for different VP

variants.

2.3. Alternating approach

The so-called "alternating approach" naturally follows the conventional scenario where commu-

nity concerned with the magnetospheric/ionospheric current system and the community con-

cerned with mantle electrical conductivity structure conduct research separately based on one

anothers’ estimates of their respective models, contributing to an iterative refinement of both

models. Combining these procedures, Koch and Kuvshinov (2013) proposed a scheme where,

starting from an initial model of mantle conductivity, one first comes up with a preliminary

estimate of the inducing currents, then recovers the conductivity model based on the estimated

source, and then goes back to refining the source with the "recovered" mantle conductivity. In

12



2.3. Alternating approach

a very recent work, Zhang et al (2022) utilized the same alternating strategy to invert for the

conductivity in the mantle transition zone (MTZ), in combination with a model-based inducing

current representation. This procedure can in principle be repeated several times, until the

model estimates or the data misfits reach certain convergence criteria.

Similar to variants of the variable projection, the alternating approach also offers a way to op-

timize on external currents and mantle conductivity simultaneously, without resorting to fully

non-linear inversion. It can be viewed as a conglomeration of successive inversions, conven-

tionally carried out separately, with respect to external currents and mantle conductivity. The

major difference from VP is that in the case of a naive alternating approach, once one part

of the model is estimated, inversion on the other part is carried out in a complete standalone

stage to minimize the objective. This difference is especially pronounced during inversion of the

electrical conductivity, where a significant number of iterations are usually needed to capture

the non-linear dependence of the predicted data on the conductivity model. In VP, estimate on

the source is projected and updated at each iteration step and is only used for one update, while

in the alternating approach, all iterations on the conductivity model in one inversion phase are

conducted under a fixed source. Such approach may potentially lead to high redundancy in

iterations, if not deterioration of the model estimates.

In this study we revisit and generalize the idea of alternating approach, by implementing a

flexible version of the inversion scheme for our problem. The implementation used here is based

on nonlinear model updates: at each iteration, update on the nonlinear model is generated

by Gauss-Newton method, while the source is kept fixed. At iterations pre-defined by certain

criteria (referred to as the linear update criteria), the inducing source is updated. The scheme

can be summarized by the pseudo-code as follows.

Iteration k = 0 : c(0) = F†
w(σ

(0))dw

Iteration k > 0 : Solve
(
Re

[
JH
σ Jσ

]
+ λΓTΓ

)
∆σ(k) = −Dχ2(σ(k−1), c(k−1))

⇐⇒
(
Re[(c(k−1))HDFH

w (σ(k−1))DFw(σ
(k−1))c(k−1)] + λΓTΓ

)
∆σ(k)

= Re
[
(c(k−1))HDFH

w (σ(k−1))
(
dw − Fw(σ

(k−1)) c(k−1)
)]

Update σ(k) = σ(k−1) +∆σ(k).

If k satisfies linear update criteria,

c(k) := F†
w(σ

(k))dw.

Else, c(k) = c(k−1)

(2.29)
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By varying the linear update criterion, this implementation can potentially incorporate a spec-

trum of inversion schemes. For instance, by disabling update on the linear model until the

inversion on the nonlinear part has reached convergence, one obtains one end-member scenario,

which is exactly the approach as described in Koch and Kuvshinov (2013). This scenario con-

tains the least frequent linear model estimations. In contrast, by forcing linear model regression

at each iteration, one obtains the other end-member, a scheme equivalent to the VP-RW3

(Eq. 2.25). A customized linear update criterion allows gradual change between these two

end-members.

2.4. Forward modelling

The coexistence of linear and non-linear model spaces are innate properties of EM induction

sounding stemming from the governing Maxwell’s equations. Therefore, the formulation pro-

vided above is general and will apply to any EM sounding problem where both source and

physical properties are unknown. In order to test different inversion approaches, we need to

choose a specific form of inducing source parameterization c and a forward modelling operator

F(σ), which is introduced in this section. The experiment in this study is limited to a simple

scenario satisfying the following two assumptions. First, we consider only observations made

within a current-free space between the inducing source and the induced currents. In other

words, the observed magnetic field is potential (B = −∇V ), where the potential field V can be

expanded using Spherical Harmonic (SH) functions in the frequency domain as

V (r, ω) =
∑
n,m

[
εmn (ω)

(r
a

)n
+ ιmn (ω)

(r
a

)−(n+1)
]
Y m
n (θ, φ), (2.30)

where
∑

n,m ≡
∑N

n=1

∑n
m=−n; Y m

n (θ, φ) = P
|m|
n (θ)eimϕ is a complex SH function of degree n and

order m, with P
|m|
n being Schmidt quasi-normalized associated Legendre functions, r = (r, θ, ϕ)

is the position vector in spherical coordinates, and a is the Earth radius; εmn and ιmn are the

external and internal SH coefficients, respectively.

Second, we assume a 1D radial conductivity structure of the Earth (that is, σ(r) ≡ σ(r)).

This assumption allows us to use a Q-response to describe the induction in the model (Olsen,

1999b). Q-response is a frequency-dependent electromagnetic transfer function (TF) that is

independent of the spherical harmonic order m for 1D radially symmetric conductivity, and

is formally defined as the ratio of the internal Gauss coefficient to its corresponding external
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2.4. Forward modelling

counterpart

Qn(ω;σ) =
ιmn (ω;σ)

εmn (ω)
. (2.31)

With ιmn (ω) = Qn(ω)ε
m
n (ω), the forward operator that links magnetic field (B) with model

parameters (external coefficients ε and conductivity σ) can be stated as follows

Br(r, ω) = −
∑
n,m

[
n
(r
a

)n−1
− (n+ 1)Qn(ω;σ)

(r
a

)−(n+2)
]
Y m
n (θ, φ) εmn (ω),

Bθ(r, ω) = −
∑
n,m

[(r
a

)n−1
+Qn(ω;σ)

(r
a

)−(n+2)
]
∂Y m

n (θ, φ)

∂θ
εmn (ω),

Bφ(r, ω) = −
∑
n,m

[(r
a

)n−1
+Qn(ω;σ)

(r
a

)−(n+2)
]

1

sin θ

∂Y m
n (θ, φ)

∂φ
εmn (ω).

(2.32)

Eq. 2.32 gives the magnetic field at position r and at frequency ω in terms of the unknown

variables σ and εmn , which can be reformulated in the vector form

B(r, ω) =
∑
n,m

Bm
n (r, ω;σ) εmn (ω), (2.33)

where B(r, ω) ∈ C3 is the vector magnetic field in the frequency domain, and Bm
n (r, ω;σ) ∈ C3

is the transfer function related to mode εmn for a given r and ω, whose detailed expression

is given in Eq. 2.32. While the SH coefficients εmn in Eq. 2.30 appear to be coefficients of

the potential field, they can also be used for representing the inducing current. To this end,

consider an extraneous sheet current floating at an altitude h, then the sheet current density

can be written as j(r, ω) = −δ(r − b)êr × ∇HΨext(θ, ϕ), where b = a + h, and the external

current stream function can be expanded in SH using εmn as

Ψext(θ, ϕ) = − a

µ0

∑
n,m

2n+ 1

n+ 1

(
b

a

)n

Y m
n (θ, ϕ) εmn (ω). (2.34)

It follows that the coefficients εmn (ω) give the parameterization of the inducing currents, and

constitute the aforementioned source vector c.

It should be stressed here that forward operators with other parameterizations of source cur-

rents, not limited to a potential representation, and a general 3-D conductivity distribution are

possible (Grayver et al, 2021) and can be incorporated in the formalism of Section 2.2, but this

leads to a rather lengthy and technically cumbersome implementation. Choosing a simplified

forward operator here allows us to concentrate on studying the properties of SNLS problem and

variable projection method in the context of EM induction problems, which is considered as the
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main contribution of this thesis. In addition, this forward operator allows direct comparison

between the VP / alternating approaches with the conventional approach where TFs are used

for inversion, the details of which are elaborated in Section 2.5.

In order to capture the temporal behaviour of the external field as well as its properties in the

frequency domain, the forward operator and the inversion are both established in the windowed

Fourier domain, where each window is considered a realization of the source. For a given

frequency ω and a time window τ , the magnetic field is related to the source coefficients via

dmod
τ,ω =


B(r1, τ, ω)

...

B(rNr , τ, ω)

 =


B0

1(r1, ω;σ) · · · BN
N (r1, ω;σ)

... . . . ...

B0
1(rNr , ω;σ) · · · BN

N (rNr , ω;σ)



ε01(τ, ω)

...

εNN (τ, ω)

 = Bτ,ω(σ) cτ,ω,

(2.35)

where d denotes the data vector, c denotes the vector of external SH coefficients, and the

subscripts τ and ω indicate the time window and frequency, respectively. By concatenating time

windows and periods, the forward operator with respect to the complete set of observations can

be recast to the algebraic form

dmod
ω =


dmod
τ1,ω

...

dmod
τNτ ,ω

 =


Bτ1,ω(σ) 0

. . .

0 BτNτ ,ω(σ)



cτ1,ω

...

cτNτ ,ω

 = Bω(σ) cω, (2.36)

dmod =


dmod
ω1

...

dmod
ωNω

 =


Bω1(σ) 0

. . .

0 BωNτ
(σ)




cω1

...

cωNω

 = F(σ) c, (2.37)

which is exactly the form given by Eq. 2.5. Here Nτ is the total number of time windows within

a frequency band, and Nω is the total number of frequency bands. The source vector c defined

in Eq. 2.37 thus contains the spectrum of the inducing field coefficients at Nω frequencies

and its time evolution. As a side remark, the linear operator F in Eq. 2.37, which is the full

forward modelling operator in Eq. 2.8, is an extremely sparse, block-diagonal matrix. This is a

desired property of modelling in the windowed Fourier domain, as the field observations within

each time window are considered to be independent of the source parameters from other time

windows. Calculation of F†
w, which is used in the estimation of c and the evaluation of J, can

be implemented efficiently by calculating the pseudoinverses of each diagonal block.
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2.5. Transfer function inversion

2.5. Transfer function inversion

The Q-response defined in Eq. 2.31 is an example of electromagnetic transfer functions, which

describe the Earth’s induction response to the source field in the frequency domain. Exploiting

the dependence of such TFs on the conductivity structure has proven a useful approach to

infer subsurface electrical conductivity, and has given rise to a fruitful route of applications

(Olsen, 1999c,b; Kuvshinov and Olsen, 2006; Munch et al, 2020). As a member of such TFs,

Q-response can be directly used to invert for Earth electrical conductivity (Olsen, 1999a). This

method, which involves spherical harmonic analysis (SHA) and internal/external field separation

(a process referred to as the Gauss method), Q-response estimation, and electrical conductivity

inversion (referred to as Q inversion), is used as a reference method for comparison in the

experiments.

Starting from the time series at observatories, we first estimate the external and internal field

SH coefficients. By using the potential field representation of the magnetic field B = −∇V and

the SH expansion (Eq. 2.30), the magnetic field observations at one time point (e.g. hourly

means for an hour, etc.) yield the following linear system



Br(r1, t)

Bθ(r1, t)

Bϕ(r1, t)
...

Br(rNr , t)

Bθ(rNr , t)

Bϕ(rNr , t)


=



B10,ext
r (r1) · · · BNN,ext

r (r1) B10,int
r (r1) · · · BNN,int

r (r1)

B10,ext
θ (r1) · · · BNN,ext

θ (r1) B10,int
θ (r1) · · · BNN,int

θ (r1)

B10,ext
ϕ (r1) · · · BNN,ext

ϕ (r1) B10,int
ϕ (r1) · · · BNN,int

ϕ (r1)
...

...

B10,ext
r (rNr) · · · BNN,ext

r (rNr) B10,int
r (rNr) · · · BNN,int

r (rNr)

B10,ext
θ (rNr) · · · BNN,ext

θ (rNr) B10,int
θ (rNr) · · · BNN,int

θ (rNr)

B10,ext
ϕ (rNr) · · · BNN,ext

ϕ (rNr) B10,int
ϕ (rNr) · · · BNN,int

ϕ (rNr)





ε01(t)
...

εNN (t)

ι01(t)
...

ιNN (t)


,

(2.38)

where the matrix elements are given by


Bnm,ext

r (r)

Bnm,ext
θ (r)

Bnm,ext
ϕ (r)

 = −
(r
a

)n−1


nY m

n (θ, ϕ)

∂
∂θY

m
n (θ, ϕ)

1
sin θ

∂
∂ϕY

m
n (θ, ϕ)

 ,


Bnm,int

r (r)

Bnm,int
θ (r)

Bnm,int
ϕ (r)

 = −
(a
r

)n+2


−(n+ 1)Y m

n (θ, ϕ)

∂
∂θY

m
n (θ, ϕ)

1
sin θ

∂
∂ϕY

m
n (θ, ϕ)

 .

(2.39)

Eq. 2.38 relates the external and internal field coefficients to the field observations. Given ade-
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quate observations and space coverage at time t and an appropriate choice of truncation degree

N , the system is over-determined, and a solution of the field coefficients can be constrained.

Solving the system induced by a potential magnetic field for external and internal field coeffi-

cients is called the Gauss method. The resulting time series of εmn and ιmn can then be used to

estimate the TF, via e.g. Eq. 2.31. For robustness, the estimation is usually performed on the

windowed spectrum of the time series at certain periods. In the discrete form, the windowed

spectral transform of a time series x(t) reads

X(τ, ω) = Fτ,ω [x(t)] =
1∑
k wk

∑
k∈{kτ}

wkx(tk)e
−iωtk , (2.40)

where kτ marks the indices of the data points within a time window, wk is a weighting coefficient

associated with the k−th point for a tapering window function to suppress spectral leakage.

The leading term
∑

k wk is a normalization factor, which is adopted so that a monochromatic

oscillating signal has its amplitude preserved in the transform. The windowed spectra of εmn

and ιmn from different time windows then constitute multiple realizations that can be used

independently to determine Qn, yielding the overdetermined linear system

Inm(ω) =


ιmn (τ1, ω)

ιmn (τ2, ω)
...

ιmn (τNτ , ω)

 = Qn(ω)


εmn (τ1, ω)

εmn (τ2, ω)
...

εmn (τNτ , ω)

 = Qn(ω) Enm(ω) , (2.41)

where Inm(ω), Enm(ω) ∈ CNτ are the windowed spectra at frequency ω of the internal and

external field coefficients ιmn (t) and εmn (t), respectively. This method, sometimes referred to

as section-averaging, collects the spectral values from multiple time segments as different real-

izations, and enhances the robustness of the algorithm to noise contamination. Consequently,

the linear systems 2.38 and 2.41 that lead to the transfer function Q are standard linear least

squares problems, and can be solved in a number of methods. In the implementation used in

this thesis, both the least squares problems induced by Eq. 2.38 and 2.41 are solved using the

outlier-robust regression with Huber loss. The uncertainties associated with the estimated Q̂n

can be estimated from the formal variance

[δQ̂n(ω)]
2 =

1

Nτ − 1

S2
I|Q̂n

(ω)

EH
nm(ω)Enm(ω)

=
1

Nτ − 1

∥Inm(ω)− Enm(ω) Q̂n(ω)∥22
∥Enm(ω)∥22

. (2.42)

With the estimated spectrum of the transfer function Q̂n(ω) and the associated uncertainty
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δQ̂n(ω), the final step of Q inversion can be stated as a weighted least squares problem

min
σ

1

2

N∑
n=1

K∑
k=1

∣∣∣∣∣Q̂n(ωk)−Qn(ωk, σ)

δQ̂n(ωk)

∣∣∣∣∣
2

+
λ

2
∥Γσ∥22. (2.43)

The multistage TF estimation and inversion approach provides a tractable way to separate

contributions from the inducing field and the induction currents. However, the shortcoming is

also obvious: it must be possible to estimate the TFs as an intermediate result. This significantly

restricts the application of such methods. Q response, for instance, can only be estimated under

the assumption that the magnetic field is potential and separable into internal (induced) and

external (inducing) parts. While the formulations of VP and alternating approaches can easily

accomodate any forward modelling that results in the problem 2.9, including the one that utilizes

the Q response (Eq. 2.32) and generic time-domain modellings, the TF inversion approaches

mostly only work for specific forward operators.

2.6. Optimization

Both VP/alternating approaches and TF inversions boil down to solving the nonlinear least

squares, either defined by the misfit on the data (Eq. 2.9) or the misfit on the TFs (e.g. Eq.

2.43) combined with regularizations. For robust and efficient solution to these optimization

problems, the trust-region method is used, along with quadratic models approximated using

Gauss-Newton method. The Gauss-Newton method provides a simple way to approximate the

second-order derivative of the objective function, i.e. the Hessian, with only first-order informa-

tion on the residual vector, i.e. the Jacobian of the residual. It has the merit of being efficient in

computation, as well as always providing positive-semi-definite approximations of the Hessian.

Furthermore, the update direction proposed by Gauss-Newton method is guaranteed to be a

descent direction whenever the Jacobian is full rank, although the proposed update stepsize may

not yield reduced objective (Nocedal and Wright, 2006). A trust region framework, on the other

hand, provides an excellent method to safeguard the model updates in the iteration process. In

addition to approximating the nonlinear objective function with a quadratic function, a trust

region method sets a region of the domain (usually a region bounded by a hypersphere) where

such approximation is reliable, known as the trust region. At each iteration, the optimum

of the quadratic approximation within the trust region is sought by solving the trust-region

subproblem, and the trust region radius is updated based on the predicted and the actual ob-

jective function reduction (Conn et al, 2000). It also has the additional merit that in solving

the subproblem, a damping is introduced as in typical Levenberg-Marquardt algorithms, which
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allows for handling non-positive-definite Hessians, although this is not a concern when using

the Gauss-Newton method.

2.7. Data

Having introduced the methods applied to geomagnetic deep sounding problems, we turn to the

datasets used for experimentation. In this thesis, both numerical experiments on the synthetic

dataset and inversion on real dataset are conducted. Synthetic experiments provide insights

into the reconstruction capabilities and convergence properties of different algorithms, while

inversion on the real dataset further verifies the validity of the algorithm, and has implications

with respect to the application scenarios. As mentioned, the Gauss method and Q inversion

approach is also conducted for comparison purposes.

The original dataset used in this thesis consists of hourly means of the observed magnetic

field at 163 observatories shown in Figure 2.1. Synthetic data was generated using a realistic

external field, and a two layered mantle electrical conductivity model, following the procedures

outlined as follows. First, SHA and regression with robust Huber loss is conducted on the real

observational data within the time range 2014-2018, yielding hourly time series of the external

and internal coefficients up to degree and order 3. For this, only mid-latitude observatories

were used (observatories with geomagnetic latitudes between 5° and 56°). The purpose of this

step is to obtain time series of the external field that are representative of the real external

current system in terms of spatial and temporal characteristics. Using the estimated external

field coefficients and a pre-defined 1D Earth electrical conductivity model, synthetic magnetic

field time series at real observatory locations are obtained using Eq. 2.32. In this synthetic test,

a simple but realistic two-layered mantle conductivity model is set up following the inversion

result from Grayver et al (2017) to first order, with an upper-mantle (surface to 660km depth)

electrical conductivity of 1.0×10−2 S/m, and a lower-mantle (660km to 2900km depth) electrical

conductivity of 1.0 S/m. Finally, the synthetic field observation time series are contaminated

with a series of independent and identically distributed Gaussian white noise in order to mimic

measurement errors.

Since the implementations of the VP methods and the alternating approach are posed in the

frequency domain, the same segment-averaging concept is used to prepare the data vector d. The

data vector d is obtained by transforming the time series of magnetic field observations using the

windowed spectral transform with tapering defined in Eq. 2.40. As the problem (2.9) is posed in

weighted least squares, the weights associated with the observational data play an important role
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Figure 2.1.: Locations of observatories used in the study. Note that observatories poleward of

55◦ geomagnetic latitude were excluded.

in the inversion process. In other words, a reasonable estimate of the uncertainties associated

with the data is desired. While the uncertainties of the field observations in the time domain

may be reasonably estimated, propagating such uncertainties into the windowed Fourier domain

requires special attention. For this purpose we consider a time series consisting of a true signal

and a random noise

x(tk) = x(0)(tk) + x′(tk), (2.44)

where x(0) is the signal and x′ is the random noise. We assume the noise time series consists

of independent and identically distributed (i.i.d.) random variables at each time step, each

following the same zero-centered normal distribution, i.e. x′(tk) ∼ N (0, s2). The resulting time

series (x′(tk)) is then a Gaussian white noise. Invoking linearity of the transform (2.40) with

respect to x(t) and the fact that x(t) has a definite spectrum with zero variance, it is self-evident

that the variance of x(t) in the windowed Fourier domain is the variance of the defined noise

signal,

Var[X(τ, ω)] = Var
[
X ′(τ, ω)

]
= E

[
|X ′(τ, ω)|2

]
−
∣∣E [

X ′(τ, ω)
]∣∣2 , (2.45)

where X ′(τ, ω) denotes the windowed spectral transform of x′(t). Inserting the expression of
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X ′(τ, ω) in terms of x(tn) via Eq. 2.40 we come to the expressions

E
[
X ′(τ, ω)

]
= E

 1∑
k wk

∑
k∈{kτ}

wk x
′(tk)e

−iωtk


=

1∑
k wk

∑
k∈{kτ}

wk E[x′(tk)]e−iωtk = 0,

E
[
|X ′(τ, ω)|2

]
= = E

 1

(
∑

k wk)
2

∑
k∈{kτ}

∑
l∈{lτ}

wkwl x′(tk)x
′(tl)e

iω(tk−tl)


=

1

(
∑

k wk)
2

∑
k∈{kτ}

∑
l∈{lτ}

wkwl E
[
x′(tk)x

′(tl)
]
eiω(tk−tl)

=
1

(
∑

k wk)
2

∑
k∈{kτ}

∑
l∈{lτ}

wkwl

(
s2δkl

)
eiω(tk−tl) =

∑
k w

2
k

(
∑

k wk)
2 s

2.

(2.46)

Here x′ denotes the complex conjugate of x′, and δkl is the Kronecker delta. The final steps

for E[X ′] and E[|X ′|2] use the zero centered property of x′(tn) and the mutual independence

between the values in the time series, respectively. The variance associated with the windowed

spectrum is then given by

Var [X(τ, ω)] =

∑
k w

2
k

(
∑

k wk)
2 s

2. (2.47)

Therefore, the spectral uncertainty is not merely proportional to its temporal counterpart, but

is also related to the length of the time window. Counter-intuitive as it seems, the uncertainty

is roughly inversely proportional to the length of the time window. Longer time windows which

stack more temporal measurements into one frequency-domain value lead to lower uncertainties.

As Eq. 2.47 is used to estimate the spectral uncertainty in both our synthetic tests and the real

data test, due to the aforementioned stacking effect, longer periods are consistently associated

with smaller spectral uncertainties, since they require longer time windows. It however needs to

be stressed here that Eq. 2.47 is based on the underlying assumption of a Gaussian white noise.

This assumption is clearly overly ideal due to long-term drift and other inconsistencies in very

long period components of the observations. For the synthetic dataset, however, as the noise

added to the synthetic data indeed satisfy the assumption, such estimation of the uncertainty

in the frequency domain is optimal.
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In this study, both synthetic and real data experiments are carried out. In both cases, the

VP/alternating methods are tested, along with a conventional approach for field separation and

subsurface conductivity inversion, i.e. the Gauss method for internal/external field separation,

followed by Q-response estimation and inversion.

The regularization term introduced to tackle the model non-uniqueness and ill conditioning

inherent of EM induction sounding problems has multiple interpretations. From a deterministic

point of view, the Tiknonov matrix Γ in Eq. 2.9 and Eq. 2.43 alters the topography of the

objective function, so that among the diverse models that yield predictions of data that are

similar within a threshold (controlled by λ), the model with the least regularization term ∥Γσ∥22
is sought. From a probablistic point of view, it is equivalent to incorporating prior knowledge,

in which case λΓTΓ is interpreted as the inverse of the (prior) model covariance C−1
σ . Here the

1st order finite difference operator is chosen, effectively maximizing model smoothness. The

regularization strength λ controls the relative weight between the data misfit and the model

roughness. Since it is a hyperparameter in inversion that cannot be determined a priori, a series

of inversions are carried out with varying regularization strengths for each inversion scheme and

the desired value of λ is chosen using the L-curve (Hansen and OLeary, 1993) to mitigate

completely ad hoc choices.

Finally, we note that the absolute values of the data misfit for Q-response inversion and

VP/alternating methods are not directly comparable. Even when the data misfit is normalized

by the number of data samples, Q-response inversion and VP/alternating methods perform in-

version with respect to different data. The latter approaches directly work on the observational

data in the frequency domain, the uncertainties of which are propagated from the time-domain

estimates, while the former is conducted on estimates of transfer functions and their formal

uncertainties in regression. Therefore, the magnitudes of the objective function between Gauss

and VP/alternating methods should not be directly compared. It naturally follows that the

respective suitable regularization strengths are also not directly comparable in magnitude, and

they are expected to vary between Q-response inversion and VP/alternating schemes. It is,

however, worthy of noticing that VP and alternating methods, regardless of their variants,

share the same data misfit evaluation, and are thus comparable in terms of data misfit as well

as regularization strengths. Following the standard procedure, the choices of regularization

23



3. Results

strengths are done separately for each scheme, but such choices may be general across different

variants of VP and alternating approaches, as is indeed the case in the experiments shown later.

3.1. Synthetic experiment

Since both Q-response inversion and the VP/alternating approaches are done in the frequency

domain, the same discrete frequencies are chosen for all inversions. In the case of synthetic test,

15 periods log-spaced between 1 and 100 days are chosen. The inducing field to be determined

is parameterized as SH coefficients up to SH degree and order 3 at a subset of 30 observatories,

and the electrical conductivity model is parameterized as a 15-layer 1D profile. Although the

coherence of the Q-responses obtained by Gauss method is adequately high for all modes and

frequency bands due to the ideal synthetic data (see e.g. Figs. B.3, B.4), only the degree-one

response Q1 is used for inversion afterwards. VP/alternating approaches, on the other hand,

automatically try to fit all modes and frequencies simultaneously, as the observational magnetic

field is viewed as the fitting objective in this schemes.

For VP methods, all three variants are tested in the process. For alternating approaches, four

different linear update rules are tested: 1) the external field is estimated once at the beginning

using some initial conductivity model, and never updated afterwards; 2) the external field is

re-estimated every 10 iteration; 3) the external field is re-estimated every 5 iterations, and 4)

the external field is updated following the Fibonacci sequence (that is, at iterations 1, 2, 3, 5,

8, ...). The alternating methods with these four linear update rules are hereinafter abbreviated

as alt-∞, alt-10, alt-5 and alt-Fibonacci, respectively.

Most of the synthetic data inversions produce satisfactory results of the conductivity profile

within ∼ 20 iterations. In particular, we first look at two representative cases, namely full-VP

and alt-Fibonacci, in addition to the reference Q-response inversion. These include the best-

performing schemes within VP variants and alternating approach variants, as will be become

clear in the results and discussions that follow. The recovered mantle conductivity profiles

are shown in Fig. 3.1. The conductive lower mantle is recovered almost perfectly, especially

in the case of full-VP and alt-Fibonacci, while the inverted upper mantle conductivity follows

a gradual decrease from 600km depth upwards, and in these cases experience a mild reverse

jump at lithospheric depths. As will be demonstrated later, the frequency bands of the data are

most sensitive to the upper lower mantle, resulting in good constraints within the corresponding

depth range, while the gradual depth-dependent upper mantle conductivity is largely due to the

smoothing effect of the regularization applied. Q-response inversion generates a similar result,
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3.1. Synthetic experiment

with a mildly smoother upper mantle electrical conductivity and a slightly rougher lower mantle

model. In general, the magnitudes of both the upper and the lower mantle can be recovered

satisfactorily using VP and alternating approaches to the same extent as using Q-response

inversion.
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Figure 3.1.: Electrical conductivity profile recovered for representative inversion schemes. The

results come from Q-response inversion (left), full-VP (middle) and alternating

approach using the Fibonacci linear update rule (right). In each case the final

inversion result (blue) is plotted together with the initial model (red) and the ground

truth (light blue). The intermediate models along the iterations are also plotted

in gray scale, color-coded by iteration numbers. Lighter lines correspond to earlier

iterations, while darker lines correspond to later iterations.

One of the merits of variable projection inversions as well as alternating approaches is that

they simultaneously produce the estimate of the linear model, i.e. the inducing field in this

context, along with the mantle electrical conductivity. Since the inversions are carried out in

the frequency domain, the linear model is estimated in the form of windowed spectrum εmn (τ, ω)

(Eq. 2.35). In the synthetic test, the ground truth external coefficients are known, and hence

can be used to validate the windowed spectrum of the inducing field SH coefficients inverted

using these approaches. A comparison between the ground truth and the estimated external

field using VP for modes ε12(τ, ωi) and ε22(τ, ωi) are presented in Fig. 3.2 and 3.3, respectively,

with the three frequency bands presented being ωi = 2π/Ti and Ti =1, 10 and 100 days. From

visual inspection, our synthetic tests for VP yields an estimate almost identical to the ground

truth, indicating almost perfect recovery of the windowed spectrum of the external field. This is
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not limited to such frequency bands of spherical harmonic components with high field energies

(e.g. the daily band ∼ 1 day for ε12, Fig. 3.2 left panel), but applies to frequency bands with

marginal energies (e.g. Fig. 3.2 right panel) or spherical harmonic coefficients with low energies

(Fig. 3.3) as well. Similar results are observed for alternating scheme with Fibonacci linear

update rule (Figs. B.1 - B.2).
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Figure 3.2.: Recovered inducing field coefficient ε12 in the frequency domain using full-VP. Three

frequency bands (left: 1 day; middle: 10 days; right: 100 days) are shown. The

windowed spectra are split into real parts (upper panel) and imaginary parts (lower

panel). In each subplot the inversion results (cyan for real parts and light pink for

imaginary parts) are shown on top of the ground-truth windowed spectrum (thick

blue and red lines).
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Figure 3.3.: Recovered inducing field coefficient ε22 in the frequency domain using full-VP. The

frequency bands and the legends are the same as Fig. 3.2.

It is hence demonstrated that with appropriate hyperparameters and specific variants, all types

of inversion methods are able to yield satisfactory solutions on the synthetic dataset. Further-

more, the convergence behaviours are similar across these representative inversion schemes, as

shown in the evolution of model roughness and root-mean-square (RMS) misfit (Fig. 3.4) and

the period-wise evolution of RMS misfits (Fig. 3.5). All of these inversion cases (except for
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3.1. Synthetic experiment

alt-∞) converged to the stable solution within 20 iterations, not least due to the simple setup

and perfect estimation of the error. Full-VP scheme and alt-Fibonacci scheme have reached a

stationary solution at the 10th iteration, whereas Q-response inversion reaches one three itera-

tions later. As a side note, full-VP is particularly fast in reducing the misfit, taking only 5 to 6

iterations to achieve a satisfactory solution in terms of RMS-misfit, although the regularization

term still plays the role of reshaping and smoothing the solution in later iterations. In all cases,

we observe an initial bulge of model roughness, followed by a gradual decrease, accompanied by

an almost monotonic decrease of the data misfit. This behaviour is expected as the inversions

start from a uniform model with zero roughness, thus they first attempt to fit the data at the

cost of expanding model complexity, and then stabilize by settling for a smoother model after

the data misfit reaches a certain level.
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Figure 3.4.: Evolution of root-mean-square misfit and model roughness. The evolution of nor-

malized RMS misfit (right axis) are plotted in blue, and the evolution of model

roughness (left axis) plotted in red. Roughness is evaluated by calculating ∥Γσ∥22.

From light to dark colors, the parameter evolution curves are plotted for Q-response

inversion, full-VP, alt-Fibonacci scheme, and alt-∞ scheme, respectively.

In full-VP and alt-Fibonacci schemes, the converged models yield normalized RMS values (χrms)

of 0.9361 and 0.9405, respectively (Fig. 3.4). This is a perfect indicator of successful data

fitting, and at the same time justifies our method of estimating the uncertainty associated with

windowed spectra (Eq. 2.47). As a side note, although the overall RMS misfits are close to one

for both schemes as anticipated, this is not exactly the case for frequency-wise RMS misfits (Fig.

3.5), which range from 0.9 to 2.0 even for best-fitting models in this ideal synthetic scenario.

Further investigation shows that even the ground truth model yields similar patterns of the

RMS misfits for different frequency bands, suggesting systematic bias for the modelling process.

This discrepancy is attributed to the inevitable spectral leakage in windowed Fourier domain
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modelling (Appendix A). The discrepancy, however, does not seem to impact our final result

notably, which is a sign that the overall error arising from this imperfect modelling process

is much smaller than the synthetic error used to contaminate the dataset, not to mention

additional modelling errors that are inevitably encountered in real datasets.
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Figure 3.5.: Frequency-wise RMS misfits for full-VP (left), alt-Fibonacci (middle) and alt-∞

(right). In each plot, the RMS errors are color-coded by the iteration number.

As already stressed, VP and alternating approaches share the same objective function, in spite

of the fact that the objective is formulated differently. Therefore, the manifolds formed by

evaluating objective in VP and alternating approaches are all subsets of the manifold in the

joint model space of σ and c. The resemblance of the misfits and of the conductivity models (Fig.

3.1) obtained using these two methods hence reflects that both approaches succeeded in locating

the same minimum in the joint model space. While in this simple example, both Q-response

inversion and full-VP/alt-Fibonacci schemes converged to χrms ≈ 1, the different approaches

start from χrms values that are one magnitude apart (Fig. 3.4). This is again attributed to the

distinct natures of Q-response inversion and VP/alternating approaches, which assign different

meanings to the respective RMS misfits. As surrogate methods for joint model space inversion,

VP/alternating approaches formulate misfits directly on the data; χrms hence indicates how

much of the observational data is explained by the combination of the estimated electrical

conductivity model and the inducing source. Due to the primary role of the inducing field,

a considerable part of the data can already be accounted for by a reasonable estimate of the

inducing field without resorting to refined conductivity model, leading to a relatively small χrms

even at the initial model. TF inversion, on the other hand, directly fits the estimated TF, which

is itself only related to the subsurface medium. The primary contributions from the inducing

field to the observations have already been separated from the TFs, e.g. using Gauss method

in this case. Therefore, χrms in this context only contains the second-order effect, and signals
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how much of the TF is explained by the subsurface conductivity model alone, leading to a much

larger RMS misfit at the initial model.

As our synthetic dataset comprises known inducing field models, we also examine how the

inducing field estimates converge towards the ground truth solution for VP and alternating

methods. We introduce the frequency-wise relative error for the SH coefficients, defined as

ϵnmSH (ω) =

√√√√√√
∑

i

∣∣∣εm,true
n (τi, ω)− εm,est

n (τi, ω)
∣∣∣2∑

i

∣∣∣εm,true
n (τi, ω)

∣∣∣2 . (3.1)

The evolution of ϵnmSH (ω) as a function of iterations for full-VP, alt-Fibonacci and alt-∞ are shown

in Figure 3.6. While in VP the inducing field monotonically approaches the ground truth except

for marginal oscillations around the converged solution, and eventually converges at iteration

6 for all presented modes using VP, slightly earlier than the conductivity model stabilizes, the

inducing field does not converge until the 13th iteration using the alt-Fibonacci scheme. As a

reminder, however, since alternating approaches do not update the inducing currents at each

iteration, only 5 linear projections have been made by iteration 13 in alt-Fibonacci, following

the Fibonacci linear update rule. Deterioration of the inducing field solution is also observed

in the long periods when using the alt-Fibonacci scheme. For instance, the estimated inducing

field has higher relative error at iteration 8 compared to iteration 5 for all presented modes at

periods longer than 30 days (Fig. 3.6, middle column).

The alt-∞ shown here represents the worst inversion scheme. As this approach does not update

the source estimate after the initial regression, the error of the inducing field remains the

initial value throughout the process (Fig. 3.6), which in turn leads to stagnant RMS-misfit

well above one (Fig. 3.4, 3.5). Although using such simplistic model as the initial model in

our inversions may yield reasonable estimates of the field in some energetic modes where the

primary contributions are sufficiently pronounced, the estimates become very problematic for

long periods or weak modes (Fig. 3.6, middle and bottom rows), an issue which will be further

examined in Chap. 4.

Previously we have focused on Q-response inversion and two representative schemes of VP and

alternating approaches to compare model recovery and convergence behaviour. The difference

between variants within VP or alternating approaches, on the other hand, is more pronounced,

as we have alluded to in the comparison between alt-Fibonacci and alt-∞ schemes. Among

variable projection schemes, full-VP is the scheme with the lowest degree of approximation
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Figure 3.6.: Frequency-wise relative errors for different modes. The columns show the RMS

errors using full-VP (left), alt-Fibonacci (middle) and alt-∞ (right), respectively.

Different rows are for different modes, i.e. (1, 0) (top), (2, 1) (middle) and (2, 2)

bottom. In each plot, the relative errors are color-coded by the iteration number.
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(the only approximation made is on the Hessian), and should in principle provide the best

local constraint. This constraint is further simplified in VP-RW2, and is in the end completely

abandoned in VP-RW3. Although different variants are observed to converge to almost the

exact same electrical conductivity model that is satisfactorily close to the ground truth for the

synthetic data (Fig. 3.7), it is indeed observed that VP-RW3 exhibits slower convergence for

both linear (Fig. 3.8) and non-linear (Fig. 3.7) parts of the model. Most period bands of the

external field take 8 ∼ 10 iterations to converge. Deterioration of the solution is also observed

for VP-RW3 for periods longer than 106 seconds, similar to what is observed for alt-Fibonacci

scheme, while such increase of the error is absent in full-VP and VP-RW2, consistent with the

effect of increasing approximation levels. It is anticipated that poorer performance of VP-RW3

will be more pronounced for more complex and high-dimensional models.
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Figure 3.7.: Electrical conductivity profile recovery for variants of VP. The results come from

full-VP method (left), VP-RW2 (middle) and VP-RW3 (right). The legends and

the color coding of the intermediate models are the same as in Fig. 3.1.

Next, we look at the model recovery and convergence behavior of alternating approaches when

the linear update frequency is decreased. As shown above, updating the inducing field coeffi-

cients at iterations in a Fibonacci sequence still allows the inversion to converge to a solution

that is fairly close to the VP solution (Fig. 3.1) within 20 nonlinear iterations with only 6 linear

updates, but as soon as the frequency is cut to every 5 iterations, considerable deterioration

of the electrical conductivity recovery occurs, particularly in the lower mantle (Fig. 3.9). Not

only is the inversion taking longer to reach a stationary point, but the scheme fails to locate

the best fitting non-linear solution within 20 iterations as well, proving to be at best only half
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Figure 3.8.: ϵ21SH(ω) evolution for VP methods. The variants shown are full-VP (left), VP-RW2

(middle) and VP-RW3 (right).

as efficient as VP or alt-Fibonacci.
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Figure 3.9.: Electrical conductivity models recovered using variants of alternating approaches.

The variants either update the inducing source with a constant interval of 5 itera-

tions (left, alt-5) or 10 iterations (middle, alt-10), or never update the source after

initial estimation (right, alt-∞). The legends and the color coding of the interme-

diate models are the same as in Fig. 3.1.

Interestingly, despite the deteriorated recovery of the mantle conductivity, alt-5 produces an

estimate of the external field that is comparable in accuracy to VP or alt-Fibonacci scheme

(compare Fig. 3.10 with Fig. 3.6), with slightly increased errors only in some long period

bands. However, as seen in Fig. 3.11, the misfit and the model roughness for alt-5 have

already stagnated at the final stage, and the convergence criterion is satisfied at iteration 18,
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indicating that the optimization has already converged. Therefore, the misfit between the

ground truth and the inverted conductivity models (Fig. 3.9) is not due to non-convergence or

failure in seeking the stationary point, but can only be attributed to the marginal difference

in external field, and the final inverted conductivity profile should be considered the optimizer

of the manifold constrained by the slightly incorrect external field. Alt-5 provides such a clear

example where a relatively small error in the inducing source field leads to significant artifacts in

conductivity model. When the number of linear updates are cut even further, both the external

field estimation and the mantle conductivity recovery deteriorate further, as in the case of alt-10

and alt-∞ (Fig. 3.9 and 3.10).

It is worth mentioning that two types of convergence behaviors are observed in these exper-

iments. In one common scenario, the model estimates along with the diagnostic parameters

such as χrms and roughness either fulfill the convergence criterion, terminating the inversion,

or oscillate mildly in the vicinity of a stationary value. The model is considered "converged"

in this scenario, whether (as in VP-variants and alt-Fibonacci scheme) to the vicinity of the

ground truth or to a local optimum (undoubtedly the case in alt-5) of the manifold in the joint

model space. In another scenario (observed in the case of alt-∞), the objective is not improved

for more than 10 iterations. This behavior indicates that the trust-region Newton method em-

ployed for optimization repeatedly rejected all update proposals, likely because of a poor local

quadratic approximation and severe ill conditioning away from the optimum.
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Figure 3.10.: ϵ21SH(ω) evolution for alternating approaches. The variants shown are the same as

in Fig. 3.9.

As a final perspective, we examine the dual property of Hessian matrices obtained using different

methods. The Hessian matrix is the coefficient for quadratic approximation at a point for the

objective function, and describes the local curvature of the function. Non-regularized Hessian

is calculated directly using the Gauss-Newton approximation as H ≈ JTJ, with J being the
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Figure 3.11.: Evolution of RMS misfit and model roughness. The displayed quantities and the

calculation of roughness are the same as in Fig. 3.4. The curves are color-coded

by inversion schemes, the lightest ones to the darkest ones corresponding to alt-

Fibonacci, alt-5, alt-10 and alt-∞, respectively.

Jacobian matrix, constructed using Eq. 2.22, 2.24 or 2.25 in VP, or simply H ≈ JT
σJσ for

alternating approaches. Hessian of the entire objective function, on the other hand, additionally

contains the regularization term, and is given by Hreg = H+λΓTΓ. The significance of Hessian

is two-fold. First, it forms the linear system at each iteration in Newton methods, and controls

the conditioning of the problem. The conditioning of the non-regularized Hessian is related

to the topography of the misfit function and provides some measure for how ill-posed the

problem constrained by the data is. VP and alternating methods are found to produce Hessian

matrices that are slightly more well-conditioned compared to the Q-response inversion (Fig.

3.12), although the difference is marginal in the leading eigenvalues, and is only considerable

for smaller eigenvalues. We do, however, observe that it is a consistent behaviour throughout

the iterations, and is robust regardless of the data selection.

Secondly, in the framework of Bayesian inference, the regularization is considered as the inverse

of the prior model covariance, and the Hessian can be reformulated as the inverse of the posterior

model covariance

Hreg = H+ λΓTΓ = H+C−1
σ = Ĉ−1

σ , (3.2)

where Cσ = (λΓTΓ)−1 and Ĉσ are the prior and posterior model covariances, respectively. To

facilitate a direct comparison between different approaches, the dimensionless resolution matrix

can be introduced as a transfer matrix from the true model perturbation to the resolved model

perturbation in the vicinity of a given model. The resolution matrix can be constructed from
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Figure 3.12.: Spectra of the Hessian matrices for Q inversion and VP method. The spectra

are calculated by evaluating Hessian of Q forward modelling at the 10th iteration

result of Q inversion (red), evaluating Hessian using VP at the 10th iteration result

of VP inversion (blue), and evaluating Hessian of Q forward modelling at the 10th

iteration result of VP inversion (purple).

the Hessian matrix as

R = I− ĈσC
−1
σ = I−H−1

reg (Hreg −H) . (3.3)

Within the vicinity of the solution, the induced perturbation in the recovered model is related to

the perturbation in the "true" model via the resolution matrix, i.e. δσ̂ = Rδσ∗, where σ̂ is the

estimate of the model from inversion, σ∗ is the true model, and δ denotes the perturbation in

the respective models. A diagonal element of 1 indicates perfect resolution of the corresponding

model parameter, and a value of 0 indicates virtually no resolution. Non-trivial off-diagonal

elements contain the smearing effect between model parameters. We observe relatively high

resolution (> 0.5) for 500 ∼ 2000km in the resolution matrices, with strong smearing of the

electrical conductivity of the 1600 ∼ 2200km layer into the 2200 ∼ 2900km layer (Fig. 3.13), a

feature ubiquitous in all inversion schemes. This general feature of the resolution matrix can be

attributed to the bandwidth of the data. In our synthetic example, the frequencies cover two

decades of periods from 1 day to 100 days, a band that is most sensitive to the depth of the

MTZ (410-660km depth) and upper part of the lower mantle. Another demonstration comes

from an alternative TF called the C-response, whose values and uncertainties can be trivially
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converted from Q-responses via

Cn(ω) =
a

n+ 1

1− n+1
n Qn(ω)

1 +Qn(ω)

δCn(ω) = Cn(ω)

(
1 + n+1

n

)
δQn(ω)(

1− n+1
n Qn(ω)

)
(1 +Qn(ω))

.

(3.4)

With a dimension of length, the real part of the C-response corresponds to the central depth of

induced currents, and is hence indicative of the penetration depth of the EM field at a certain

frequency. The Q-responses estimated via SHA and the corresponding C-responses are shown

in Fig. 3.14, indicating penetration depths ranging from 600km at diurnal band to 1500km at

100 days. As seen from previous examples, the electrical conductivity within this depth range

is best constrained (Figs. 3.1 and 3.7). This is true even in the alt-5 inversion scheme (Fig.

3.9) where the model recovery is overall not ideal. Apart from that, slight improvements can be

identified in VP/alternating resolution matrices compared to the Q-response inversion. Whereas

only depth range 700 ∼ 1200km have resolution higher than 0.7 in the Q-response inversion

result, both VP and alternating approaches extend such high resolution up to 1600km. At the

same time, VP/alternating schemes also suppress smearing between electrical conductivities of

adjacent layers compared to Q-response inversion, leading to two diagonally dominant elements

in the resolution matrix.

Figure 3.13.: Resolution matrices for representative inversion schemes. The resolution matrices

are calculated for the best-fit 1-D mantle conductivity models consisting of 16

layers as obtained by applying the Q-response inversion and Gauss method (left),

full-VP scheme (middle) and alt-Fibonacci (right), respectively.
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the estimates. The squared coherence of the transfer functions are shown in the

bottom panel.
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3.2. Real data inversion

The variable projection method is applied to the real ground geomagnetic observatory data

collected between years 2014-2018 in order to simultaneously reconstruct mantle conductivity

and external field spectrum. Several amendments are introduced to the pipeline used in nu-

merical experiments so as to tailor the method to real-Earth probing purposes. First, a new

semi-diurnal band (12 hours) is added to the aforementioned 15 frequency bands spanning two

decades. This is used for improving constraints to the asthenospheric conductivity. Second, the

parameterization of the mantle conductivity is expanded to a 45-layer 1-D profile. Following

the practice of Grayver et al (2017), a fixed surface layer with the conductance of 6600 S is

introduced, representing an average ocean-sediments conductance over the globe.

The data comes from 120 geomagnetic observatories within the mid-low geomagnetic latitude

range of 5◦ ∼ 56◦. During preparation of the windowed spectrum of the field observations, the

observatory data in each time window are thresholded with 99% valid data and the missing

observations are linearly interpolated before the windowed spectral transform (Eq. 2.40). For

real time series of the magnetic field from observatories, no information on either the spectral or

temporal properties or the magnitude of the noise is known. It is apparent that when a Gaussian

white noise is assumed, the noise magnitude serves as a mere normalizing factor for the data

misfit (Eq. 2.47), but would not alter the geometry of the objective function. It then follows

that the behaviours in inversions (convergence, results, etc.) are invariant with respect to the

assumed noise level, except for a corresponding scaler for the regularization term. Meanwhile,

the spectral and temporal behavior of the unknown noise poses a much greater threat. Without

the Gaussian white noise assumption, the estimation of the Fourier-domain uncertainty (Eq.

2.47) would be invalidated. Nevertheless, for practical purposes, a Gaussian white noise is still

assumed for the real observations, and a standard deviation of 1nT is hypothesized.

The Q-responses and the corresponding C-responses of degree one are shown in Fig. 3.15. In

sharp contrast to the synthetic experiment where the coherence is sufficiently high for virtually

all modes and frequency bands, the real dataset yields considerably lower coherence for certain

frequency bands. This is closely related to the dominant modes of the source. For instance,

the diurnal band (24 hours) is dominated by ionospheric signals, which has a strong (2, 1) SH

component. Estimates of Q-responses using other modes, including the first zonal harmonic,

will be strongly contaminated and biased due to relatively low energies, as shown by the low

coherence and spurious jump in the TF values of Q1 in the diurnal band (Fig. 3.15). It is

therefore not sensible to use all frequency bands of Q1 for Q-response inversion. Instead, via
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3.2. Real data inversion

thresholding the coherences, the following period bands are chosen: the period bands starting

from 33 hours to 100 days of Q1 estimated from SH mode (1, 0), the period bands of 24 and 33

hours of Q2 estimated from SH mode (2, 1), and the period band of 12 hours of Q3 estimated

from SH mode (3, 2). These combinations of period bands and SH modes have high coherence

(see also Figs. B.5 and B.6), and are considered reliable for inversion.
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Figure 3.15.: Q-responses (top) and C-responses (middle) of degree 1 estimated from SH coeffi-

cients of mode (1, 0) in the real dataset. The error bars indicate the uncertainties

associated with the estimates. The squared coherence of the transfer functions are

shown in the bottom panel.

A series of inversions are conducted with varying regularization strengths (Fig. 3.16, Fig. 3.17).

For full-VP, all inversions eventually converged around 20 iterations, but some converged to sub-

optimal solutions, probably local optima (regularization strengths 1.0 × 10−3 and 1.7 × 10−3).
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The local optimum issue is even more pronounced in the case of Q-response inversion (Fig.

3.17), where one can assert both the inversions at λ = 32 and λ = 100 converged to local

minima, whose RMS-misfit is considerably larger than the solution obtained using λ = 320.

Also obvious is the fact that unlike the synthetic tests, the VP inversions on the real dataset

converged at models with RMS-misfits χrms ≈ 11.7 ≫ 1. We however notice that the absolute

reduction of RMS-misfit (∆χrms ≈ −2) is comparable to that of synthetic tests. In the end,

the regularization strengths of 0.32 and 320 are chosen for the preferred VP model and the

Q-response inversion model, respectively. These regularization strengths yield results located

at the kinks of the respective L-curves, and are considered to give reasonable trade-off between

data misfit and model complexity.
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Figure 3.16.: L-curve of model roughness ∥Γσ∥22 and RMS-misfit for full-VP.
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3.2. Real data inversion

The VP inversion result (Fig. 3.18 right panel) shows a resistive upper mantle where the

electrical conductivity monotonically increases from down to 10−4 ∼ 10−3S/m near the surface

of the Earth to 1S/m at the bottom of the MTZ. The maximum mantle conductivity at 750km

depth just beneath the MTZ reaches 2 ∼ 3S/m, characterized by a conductive peak, a feature

that is ubiquitous when using weaker regularizations. Beneath this conductive layer, the lower

mantle is characterized by a resistive kink, followed by a mildly increasing conductivity profile,

from ∼ 1S/m at 1200km depth to 2S/m at 2000 to 2500km depth.
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Figure 3.18.: Mantle conductivity obtained from ground observations within time period 2014-

2018, using Q-response inversion (left) and variable projection inversion (right).

The legends and the color-coding of the intermediate inversion steps are the same

as in Fig. 3.7. A surface layer with electrical conductance of 6600S is kept fixed

throughout the inversion.

The general pattern of the 1D profile obtained using VP agrees well with that obtained in the

Q-response inversion (Fig. 3.18 left panel), especially in the MTZ and the upper lower mantle,

a depth range to which the high sensitivity of the data is confirmed by the C-response (Fig.

3.15) and the respective resolution matrices (Fig. 3.19). The C-response of degree one shows

that the penetration depth of the EM field ranges from 500km to 1200km in these frequency

bands. A similar pattern is observed in the resolution matrix, with highest resolution at 750km

depth, and limited resolution extending to 1300km. In the upper mantle or the deeper lower

mantle, however, our data shows weak resolution. In the lower-right block of the resolution

matrices, a curved band of positive elements fill the lower triangular part, indicating strong
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smearing effects, owing to both the frequency band of the data and the regularization applied.

As a result, the recovered electrical conductivity model in the deeper lower mantle is strongly

affected by the overlying layers. We therefore conclude that the features recovered within the

depth range of 500 to 1300km is robust; these include the significant conductivity increase with

depth in the MTZ, the conductive layer in the uppermost lower mantle, which are consistent

features between the Q-response inversion and the VP inversion. The electrical conductivity in

the upper mantle as well as in the lowermost mantle are however not well constrained by the

data.

Figure 3.19.: Resolution matrices for the real data, using Q inversion and VP scheme. The

resolution matrices are calculated for 44 layered mantle conductivity model at the

respective inverted models.

As in the synthetic tests, the windowed spectra of the external field SH coefficients up to degree

and order 3 are acquired in the VP inversion. The field estimation is roughly consistent with

that obtained by field separation in Gauss method (Fig. 3.20), but its consistency is highly

dependent upon the energy of the mode. For energetic spatial modes, e.g. periods longer than

one day of ε01 and diurnal bands of ε12, etc. the results are highly consistent. Modes with low

powers, e.g. 100 day period band for ε12, show large discrepancies, although the recovered trends

are still correlated. The consistency of different modes and frequencies seems to be correlated

with the coherence distribution in Q -response estimation. Similar to the relative error defined

in Eq. 3.1, a relative measure of the discrepancy of the estimated SHc coefficients can be

introduced as

ϵnmVP−Gauss(ω) =

√√√√√√
∑

i

∣∣∣εm,VP
n (τi, ω)− εm,Gauss

n (τi, ω)
∣∣∣2∑

i

∣∣∣εm,Gauss
n (τi, ω)

∣∣∣2 , (3.5)

where the superscripts indicate the methods with which the external SH coefficients are esti-
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3.2. Real data inversion

mated. The frequency-wise relative difference for mode ε12 is shown in Fig. 3.21. The frequency

bands of ε12 with the least relative difference between the Gauss method estimate and our VP

estimate are exactly the two bands whose coherences are higher than 0.9 in the Q-response

estimation (Fig. B.5) and are subsequently included in the Q-response inversion. Similar corre-

lations are observed in other modes as well (Figs. B.7, B.8). Therefore we conclude that for SH

modes and frequency bands with high coherence of Q-response, the VP method should yield

inducing source estimates that are consistent with that obtained using SHA in Gauss method.
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Figure 3.20.: Recovered inducing field coefficient ε12 in frequency domain. The frequency bands

are the same as Fig. 3.2. Each subplot shows the VP inversion results (cyan and

pink lines) on top of the windowed spectra of the external field obtained by Gauss

method (thick blue and red lines).

The correlation between the TF coherence and the inducing source consistency does not come

as a surprise, but is a natural consequence of the physical connection between the inducing

field and its induced counterpart. While VP explicitly demands that the forward modelling

governed by the Maxwell’s equation be used to directly explain the magnetic field observations,

SHA in the Gauss method does not require such causal link between the estimated internal

and external fields. It is only in the stage of TF estimation that such physical connection is

established, and coherence is used to describe how much of the internal field can be causally

explained by the forward operator, which in our case is the Q-response. Therefore, in frequency

bands and SH modes where such physical connection is appropriate for explaining the data

(i.e., high coherence), the inducing source estimate in the Gauss method should be close to that

obtained in VP (i.e. low difference).

43



3. Results

105 106 107

Period [s]

0.1

0.2

0.3

0.4

0.5

Re
la

tiv
e 

Di
ffe

re
nc

e 
of

 
1 2

Q-inv

Figure 3.21.: Relative differences of inducing field coefficient ε12 between Gauss method and VP

inversion. The red squares mark the frequency bands in this SH mode which have

a coherence over 0.9 in Q-response estimation, and are thus included in the Q-

response inversion.
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It has been shown in the numerical experiments that the implementations of VP and alternating

approaches are capable of producing inversion results that are at least equally good as, and in

several aspects better than, the recovered mantle conductivity obtained in Gauss method and Q-

response inversion with the same forward model in essence, while at the same time propagates

the uncertainty of the data to the recovered models in a consistent manner. Both VP and

alternating approaches provide an estimate of the mantle conductivity model and an estimate

of the external field at each iteration, and provide insights as to the interplay between two

model spaces.

4.1. Effect of linear update and derivative approximation

Both VP and alternating approaches provide efficient means to find a suitable solution in the

joint model space by introducing point-dependent constraints. Whereas variable projection

variants re-estimate the local "optimal" constraint at each iteration, alternating approaches allow

a user to delay the next re-projection of the linear model and re-estimation of the constraint,

implicitly assuming that the constraint remains valid at each subsequent iteration that reuses the

initial projection. Although this saves resources and time, it is observed that such assumption

may not be valid and can potentially cause considerable deterioration of the solution. Excessive

nonlinear iterations using a fixed external field model may lead a conductivity model to deviate

from an optimal solution, which in turn projects the inaccuracy back to the external field at

the next iteration (Fig. 3.6, Alt. - Fibonacci). In real settings, without information about the

ground truth, detecting such behaviour is practically impossible. Therefore, appealing though

the alternating approach might be due to its simple nature, insufficiently frequent updates

of the linear model (and with it the constraint) creates a risk of failed convergence, as was

demonstrated in this study. On the other hand, more elaborate update rules, such as alt-

Fibonacci, succeed in locating the optimal solution. This process is facilitated by more frequent

linear updates at the early stage of the inversion. Therefore, alternating approaches should

be used with care; in particular, for a given source model, the non-linear inversion on the

conductivity model should not be run until it stagnates, by which time the conductivity model

(and with it, the estimate of the external field) is probably already biased. In contrast, it is

beneficial to alternate between conductivity inversion and inducing field estimation as often as

possible initially, and only allow the linear model to freeze for more iterations at later stages.
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In addition, the variants with different approximations of the Jacobian are tested in the VP

framework. For our rather simple synthetic tests, no significant difference is observed between

the models obtained with different VP variants. However, a slower convergence for the VP-RW3

variant is indeed observed (Fig. 3.8). Different levels of approximation of the Fréchet derivatives

seem to work equally well for the synthetic experiment, and in practice it might be beneficial to

adopt either VP-RW2 or VP-RW3 variants for the sake of computational efficiency, especially

when evaluation of DF is expensive (to be the case once full 3-D forward operator is required,

e.g. if we drop 1-D conductivity parameterization).

4.2. Interplay between conductivity model and external field

The external field model and the mantle conductivity model are mutually dependent in the

optimization problem defined in Eq. 2.9. In particular, the mantle conductivity model is sensi-

tive to perturbations in the external field, as was evident in the experiments where alternations

between linear and non-linear models are done at varied frequencies (alt-Fibonacci, alt-5, alt-10

and alt-∞). Note that the application of the VP method completely eliminates this problem,

and preserves consistency between the linear and non-linear model unknowns. It does not mean

that the VP is less ambiguous than the alternating approach, but it allows one to attain the

best (in the least-squares sense) possible trade-off between source and conductivity models.

In turn, mantle conductivity has a non-negligible feedback on source reconstruction. Naturally,

currents induced in the conducting subsurface represent a second-order effect in observable fields

(there are exceptions to this observations, related to the presence of strong lateral conductivity

contrasts). Therefore, estimation of the source can produce reasonable results even for very

simple conductivity models, at least in regions far away from 3-D conductivity variations, such

as a uniform mantle conductivity of 0.1S/m, which is used as the starting model of all our

inversions, or a simplistic two-layer Earth model consisting of a 1200km thick perfectly insulating

mantle and a perfectly conducting core, hereinafter referred to as the bilayer model. For the

perfect insulator-conductor bilayer model, the Q-response of degree n is a constant given by

Qn =
n

n+ 1

(
1− h

a

)2n+1

, (4.1)

where h is the thickness of the overlying perfectly insulating layer. Due to its simplicity, the

bilayer model is often used in space physics to provide first-order approximations of the induction

effects. Indeed, such attempts are not completely unjustified, as despite their drastic difference

from the synthetic ground truth, both conductivity models prove to yield reasonable estimates
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4.2. Interplay between conductivity model and external field

of the external field windowed spectra that are roughly coherent with the ground truth external

field spectrum (Fig. 4.1), even for frequency bands in higher degree modes with limited energies.
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Figure 4.1.: Estimated windowed spectrum of the inducing field coefficient ε13. Frequency bands

are the same as in Fig. 3.2. For each frequency band, the inducing field coefficients

are shown for the VP inversion result (cyan), estimation using a uniform mantle

conductivity of 0.1S/m (magenta) and a simplistic perfect insulator-conductor bi-

layer model (orange). The estimations are produced using the synthetic data, and

are plotted on top of the the ground truth (black).

That being said, there are considerable and noticeable discrepancies between the inducing field

estimates using simplistic models and the ground truth field, for instance the amplitude dis-

crepancies of the field recovered using the two-layered conductivity, especially in short (e.g. 1

day) and long periods (e.g. 100 days). The discrepancies are also obvious from the relative field

errors evaluated in energies (Fig. 4.2), calculated from Eq. 3.1. While the inversion result from

VP gives an external field ε13 that is on average 5% different from the ground truth in most fre-

quency bands, the aforementioned simplistic models yield external fields that are typically over

15% different from the true external field. The initial uniform conductivity model, for instance,

gives relative inducing field errors of 15% in short periods, which increases to dramatic errors of

90% in periods around one month. For the simplistic two-layer model, the relative error of the

external field increases from 20% in the diurnal band, to 45% in the period bands of one to three

months. This large discrepancy is partially attributed to the low energies in these frequency

bands of ε13, but the different is considerable even for more energetic modes where all external

field estimates are overall better constraint (see Figs. B.9 and B.10). In short, although the
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4. Discussion

sensitivity of the inducing field with respect to conductivity perturbations is not as pronounced

as the other way around, those field estimates calculated using overly simplistic conductivity

models are prone to additional relative error of magnitude ∼ 10% to 80%, which might vary

depending on the quality of the approximation for the medium response in the frequency bands

and modes of interest.

105 106 107

Period [s]

0.0

0.2

0.4

0.6

0.8

Re
la

tiv
e 

Er
ro

r o
f 

1 3

Inv
Init
Bilayer

Figure 4.2.: Relative errors of the external field coefficients ε13 with different conductivity models.

Errors are shown for the VP inversion result (blue), estimation using a uniform

mantle conductivity of 0.1S/m (red) and a simplistic perfect insulator-insulator

bilayer model (orange).

4.3. Outlook

The numerical experiments and inversions in this thesis are confined to observations of ground

observatories and a conservative model parameterization. The VP and alternating methods,

however, are generalizable in both the observational and the parameterization aspects. The for-

ward modelling in this study uses a 1-D parameterization of the Earth’s mantle, which allows

use of spherical-harmonic-order-independent Q-response and efficient frequency-domain mod-

elling. In addition, the external field estimates are confined to large-scale spatial modes, up to

order 3. While such models are adequate for demonstrational purpose and prove very tractable

in numerical experiments, the real observations made on top of a heterogeneous Earth certainly

contain non-negligible 3-D effects and contributions from more fine-scaled spatial modes of the

external current system. This is clearly shown in the irreducible misfit with χrms ≫ 1 for the real

data inversion (Fig. 3.16). The modelling error can be improved by including higher degrees of
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4.3. Outlook

time harmonics as well as using realistic 3-D models. Both generalizations would significantly

increase the computational expense as well as dimensionality of the model space, which moti-

vates the use of simplified VP schemes (VP-RW2/VP-RW3) or alternating approaches. While it

is shown in the numerical experiments that different variants of VP schemes and sophisticated

design of alternating approaches yield similar results and converge to the same optimum, the

behavior of these variants on a higher dimensional conductivity model is yet to be confirmed.

Since neither VP nor alternating approaches, in their essential forms, make any explicit assump-

tions on the internality or externality of the fields, they have the capacity of incorporating both

ground observatory data and satellite data. Conventional approaches of EM induction sound-

ing utilize either the ground observatory datasets (Olsen, 1999c; Guzavina et al, 2019; Munch

et al, 2020) or the satellite datasets (Kuvshinov and Olsen, 2006; Püthe and Kuvshinov, 2014).

Attempts to incorporate both ground and space observations to invert for the conductivity has

been made (Grayver et al, 2017; Kuvshinov et al, 2021; Velímský and Knopp, 2021), also us-

ing TFs or fitting time-series of SH coefficients in time domain. The VP/alternating approach

framework demonstrated in this study is particularly suitable for accommodating both satellite

and observatory magnetic data, and can handle both in a consistent manner together with their

respective uncertainties. To achieve this, however, a fully time-domain inversion scheme need

to be laid out in prior under the variable projection framework.
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5. Conclusions

In this thesis, the task of inducing source and conductivity estimation is posed in the form

of a Separable Nonlinear Least Squares (SNLS) problem. By exploiting the inherent prop-

erty whereby observations depend on source coefficients linearly, whereas the dependency on

the subsurface electrical conductivity is non-linear, we proposed a novel inversion scheme that

solves the underlying SNLS problem by using the variable projection to determine source and

conductivity structures simultaneously. This method was applied to both synthetic tests and

real observations. Although the experiments and inversions were limited to ground magnetic

field observations and a rather simple 1-D conductivity model parameterization, it is clear that

the method is general in both the observational data and the model parameterization aspects.

Derivations in Section 2 provide general framework for exploiting the VP and show how con-

ventional inversion schemes that often already implement Jacobians for separate source and

conductivity estimation can be reformulated into the SNLS form and solved by using the VP

(or alternating) approaches. To gain additional insight into the problem. we studied several

variants of the VP and showed their relation to the full joint inversion as well alternating

inversion approaches.

The alternating approach provides a simple alternative to the VP method for solving SNLS

problems. However, one important aspect that has not been identified in previous studies is

that alternating approaches with too rare source model updates can result in deteriorated model

estimates along iterations, which eventually undermines the convergence and model recovery. To

avoid this, alternating inversions need to perform frequent re-estimation of the inducing source,

especially at early stages. Similar to previous studies, a slower convergence of the alternating

approaches compared to the full VP method is observed, although this can be compensated in

practice by lower computational cost per iteration.

By introducing additional constraints to the joint model space, variable projection methods and

alternating approaches prove to be capable of recovering both external field and mantle conduc-

tivity simultaneously. They show comparable performance to the Gauss method and transfer

function inversion on our (simple) test cases, where potential field assumption is applicable.

However, the SNLS problem solved by the VP method is not limited to potential field scenar-

ios. In particular, it can accommodate arbitrary source geometries at arbitrary locations (e.g.,

current loops, dipoles, SECS); incorporate electric field data as well as both ground and satel-
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lite observations. Importantly, VP methods make the explicit use of the physical link (through

Maxwell’s equations) between the source and conductivity, which preserves consistency between

both model spaces. This is in contrast to the conventional approaches where the source and the

mantle conductivity are estimated independently and it is often (implicitly) assumed in subse-

quent transfer function estimation and inversion that the external source estimate is "noise-free".

Our synthetic tests showed that even small inconsistencies in a source model can lead to sig-

nificant artifacts in subsurface conductivity. It is also shown that inadequate modelling of the

induced field leads to a biased estimate of the external field structure.
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A. Imperfect nature of modelling in windowed Fourier

domain

In our synthetic test we observe that although χrms ≈ 1 can be obtained for the entire dataset,

it is not the case with every frequency band (Fig. 3.5). This phenomenon should be attributed

to the spectral leakage and as a consequence, the inevitable imperfect nature of windowed-

Fourier-domain modelling. In particular, we consider two time series y(t) and x(t), which are

related in the frequency domain via

Y (ω) = H(ω)X(ω), (A.1)

where X, Y are the spectra of x and y, respectively, and H(ω) is the transfer function. In the

general formulation of VP/alternating methods, X and Y correspond to the inducing current

parameterization c and the data vector d, and H(ω) corresponds to the forward operator F(σ)

(Eq. 2.5); in the formulation of Q-response estimation, X and Y are εmn and ιmn , respectively,

while H(ω) is nothing but the Qn(ω) response (Eq. 2.41). Without loss of generality, we limit

ourselves to scalars X,Y,H ∈ C in this appendix. The goal here is to show that the windowed

spectra of x and y, given by

X(τ, ω) = Fτ,ω[x(t)], Y (τ, ω) = Fτ,ω[y(t)] (A.2)

with the transforms defined in Eq. 2.40 do not strictly satisfy the same relation in the frequency

domain. In other words, in general we have

Y (τ, ω) ̸= H(ω)X(τ, ω) (A.3)

In this appendix we strictly distinguish between the term windowed Fourier domain and the

Fourier domain. The former is defined in Eq. 2.40, and the latter is defined in its continuous

form in Eq. 2.2, and in its discrete form as the following convention of the discrete Fourier
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A. Imperfect nature of modelling in windowed Fourier domain

transform (DFT) and its inverse (iDFT)

X(ωq) =
1√
N

N−1∑
k=0

x(tk) e
−iωqtk ,

x(tk) =
1√
N

N−1∑
q=0

X(ωq) e
iωqtk ,

(A.4)

where tk = k∆t are the sampling time points, and ωq = q/N∆t are the frequency points,

k, q = 0, · · ·N − 1. The windowed spectral transform of x in time window τ at frequency ω can

be written as

X(τ, ω) =
1∑
k wk

∑
k∈{kτ}

wk−kτ0 x(tk) e
−iω(tk−tkτ0 )

=
1∑
k wk

∑
k∈{kτ}

wk−kτ0

 1√
N

N−1∑
q=0

X(ωq)e
iωqtk

 e−iω(tk−tkτ0 )

=
1√
N

N−1∑
q=0

X(ωq)

 1∑
k wk

∑
k∈{kτ}

wk−kτ0 e
i(ωq−ω)(tk−tkτ0 )

 eiωqtkτ0

=
1√
N

N−1∑
q=0

X(ωq)

 1∑
k wk

Kτ−1∑
p=0

wp e
i(ωq−ω)tp

 eiωqtkτ0 .

(A.5)

Here kτ0 denotes the first time index of the time window τ , and Kτ the total number of time

points in the time window τ . Defining the normalized spectrum of the window function within

the time window as

W̃ (ω) =
1∑Kτ−1

p=0 wp

Kτ−1∑
p=0

wp e
−iωtp , (A.6)

the windowed spectrum of x can be reiterated as

X(τ, ω) =
1√
N

N−1∑
q=0

X(ωq) W̃ (ω − ωq) e
iωqtkτ0 . (A.7)

The trailing factor eiωqtkτ0 shifts the phases at respective frequencies to the beginning of the

time window. The spectrum W̃ is normalized as such so that W̃ (0) ≡ 1. In the extreme

case of infinite length time series and time windows, we will have W̃ (ω) = δ(ω), leading to

X(τ, ω) ∝ X(ω). This is, however, never the case for finite length time series and time windows,

where the windowed spectrum at frequency ω always contains the spectrum at adjacent DFT

frequencies, i.e. X(ωq), a phenomenon known as spectral leakage. Appropriate choices of the

window function yield W̃ that can suppress the leakage, but this phenomenon still exists. The

"imperfection" of the forward modelling in windowed Fourier domain becomes clear when we
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also write the windowed spectrum of Y in a similar form

Y (τ, ω) =
1√
N

N−1∑
q=0

Y (ωq) W̃ (ω − ωq) e
iωqtkτ0

=
1√
N

N−1∑
q=0

H(ωq)X(ωq) W̃ (ω − ωq) e
iωqtkτ0

(A.8)

From Eqs. A.7 and A.8 we see that the X(τ, ω) is not simply linked to Y (τ, ω) through a product

with the transfer function, i.e. Eq. A.3. Only under one specific condition, i.e. H(ω) ≡ H0, do

the two quantities follow the same relation as their Fourier-domain counterparts, as

Y (τ, ω) =
1√
N

N−1∑
q=0

H0X(ωq) W̃ (ω − ωq) e
iωqtkτ0 = H0X(τ, ω). (A.9)

In other words, only when the transfer function has a flat spectrum (the impulse response is

pulsive) is the modelling in windowed Fourier domain exactly the same as the modelling in the

Fourier domain. Otherwise, the forward modelling as Y (τ, ω) = H(ω)X(τ, ω) cannot explain

the scattering of the data Y (τ, ω). This phenomenon should be perceived as an imperfection

that affects both the TF estimation, as well as the VP/alternating approaches when using the

specific form of forward modelling (Eqs. 2.35 - 2.37). In Q-inversion, this indicates that even

for perfect data and synthetic data, there will be residuals in the fitting of I that cannot be

explained by Eq. 2.41. In our implementation of VP/alternating approaches combined with the

forward operators (Eq. 2.35 - 2.37), this imperfection manifests itself through the misfits (Fig.

3.5).
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Figure B.1.: Recovered inducing field coefficient ε12 in the frequency domain using alt-Fibonacci

scheme. The frequency bands and the legends are the same as Fig. 3.2.
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Figure B.2.: Recovered inducing field coefficient ε22 in the frequency domain using alt-Fibonacci

scheme. The frequency bands and the legends are the same as Fig. 3.2.
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Figure B.3.: Q-responses (top) and C-responses (middle) of degree 2 estimated from SH coef-

ficients of mode (2, 0). The squared coherence of the transfer functions are shown

in the bottom panel.
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Figure B.4.: Q-responses (top) and C-responses (middle) of degree 3 estimated from SH coef-

ficients of mode (3, 1) from the synthetic dataset. The squared coherence of the

transfer functions are shown in the bottom panel.
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Figure B.5.: Q-responses (top) and C-responses (middle) of degree 2 estimated from SH coeffi-

cients of mode (2, 1) from the real dataset. The squared coherence of the transfer

functions are shown in the bottom panel.
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Figure B.6.: Q-responses (top) and C-responses (middle) of degree 3 estimated from SH coeffi-

cients of mode (3, 2) from the real dataset. The squared coherence of the transfer

functions are shown in the bottom panel.
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Figure B.7.: Relative differences of inducing field coefficient ε01 between Gauss method and VP

inversion. The red squares mark the frequency bands in this SH mode which have

a coherence over 0.9 in Q-response estimation, and are thus included in the Q-

response inversion.
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Figure B.8.: Relative differences of inducing field coefficient ε23 between Gauss method and VP

inversion. The legends are the same as in Fig. B.7.

67



B. Supplementary figures

105 106 107

Period [s]

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Re
la

tiv
e 

Er
ro

r o
f 

0 1

Inv
Init
Bilayer

Figure B.9.: Relative errors of the external field coefficients ε01 with different conductivity mod-

els. The legends are the same as in Fig. 4.2.
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Figure B.10.: Relative errors of the external field coefficients ε12 with different conductivity mod-

els. The legends are the same as in Fig. 4.2.
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