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Abstract

Alfvén waves are magnetohydrodynamic (MHD) waves with Lorentz force as restoring force.
Since initial proposition by Hannes Alfvén in 1950s, this type of waves have been recognized as an
important component in plasma physics, astrophysics, as well as geophysics. They are considered to
be associated with sunspots, differential rotation of different layers of planetary bodies, etc.

The behaviour of Alfvén waves at the medium boundary has probably already been studied by
Alfvén in early publications, and has been more extensively studied by Ferraro (1954). Ferraro con-
siders the interface between two diffusionless (inviscid as well as infinitely conductive) fluid media,
in which scenario the closed-form travelling wave solutions for the reflected and refracted waves
can be established. Most recently, Schaeffer, Jault, et al. (2012), Schaeffer and Jault (2016) studied
the reflection behaviour at a solid wall, where a Hartmann boundary layer is necessary to satisfy
the boundary conditions. Their model, however, is purely 1-dimensional, and does not incorporate
any angular dependency of the problem. In the context of planetary and geophysical fluids, it is of
interest to understand the general reflection and refraction properties of Alfvén waves, and due to
the spherical geometry of celestial and planetary bodies, how Alfvén waves behave at boundaries at
different latitudes, where they would most probably have diverse incidence directions. This article
comprehensively reviews the techniques involved in analyzing the reflection and transmission prop-
erties of Alfvén waves, and aims to establish general solutions to this problem, including but not
limited to the reflection and transmission with varying incidence orientations.

1 Alfvén waves

Alfvén waves are magnetohydrodynamic (MHD) waves with Lorentz force (or the magnetic tension)
as restoring force. In this section I review some of the key aspects of this type of ways, including the
equations, dispersion relations, phase and group velocities, etc.

1.1 Governing equations

I start by stating the governing equations of the system. Here it is already assumed that the medium is
both homogeneous and incompressible, so that

∇ · u = 0, 𝜌 ≡ 𝐶𝑠𝑡. (1)

which already filters out all acoustic waves and stratification / arbitrary heterogeneity of the setup. Ferraro
(1954) has a short section on Alfvén waves in stratified atmosphere, where the wave solution takes the
form of Bessel functions, and is shown to be damped as it enters stratification region. This might
be important in stars, planetary atmosphere, and might also become important if similar stratification
occurs in Earth’s core. When the incompressibility assumption is dropped, one obtains magneto-acoustic
(magnetosonic) waves, which are hybrid between MHD waves and acoustic waves, with wave velocities
in between Alfvén waves and acoustic waves. When both the fluctuation in density and the volumetric
strain rate are comparatively negligible ([when should they be considered negligible?]), the assumptions
should still work, and it should suffice in studying the reflection and transmission near the boundary.
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I start from Navier-Stokes equation and induction equation in a homogeneous medium,

𝜕u
𝜕𝑡

+ u · ∇u = −∇𝑃
𝜌
+ 1
𝜌𝜇0

(∇ × B) × B + 𝜈∇2u, (2)

𝜕B
𝜕𝑡

= ∇ × (u × B) + 𝜂∇2B. (3)

The total fields (u, B) are decomposed into background fields (U0, B0) and perturbation fields (u, b).
We take the background velocity field to be zero (U0 = 0), so that no advection occurs. The magnetic
background field B0 is a constant in both space and time, representing a time-invariant uniform field.
This approximation should hold as long as both the characteristic time scale and the length scale of B0
are much larger than those of the perturbed fields (in fact, the ratio should be greater than |B0 |/|b|).

To linearize the set of equations, the perturbation magnetic field is considered much smaller than
the background field (|b| ≪ |B0 |), and the perturbation velocity field is at the same order of magnitude
as magnetic field, in the sense that |u| ∼ |b|/√𝜌𝜇0. Collecting only the first order terms, we obtain the
linearized system

𝜕u
𝜕𝑡

= −∇𝑃
𝜌
+ 1
𝜌𝜇0

(∇ × b) × B0 + 𝜈∇2u,

𝜕b
𝜕𝑡

= ∇ × (u × B0) + 𝜂∇2b.

which can be further rearranged into a more symmetric form using vector identities

𝜕u
𝜕𝑡

=
1
𝜌𝜇0

B0 · ∇b + 𝜈∇2u − ∇𝑃′
eff , (4)

𝜕b
𝜕𝑡

= B0 · ∇u + 𝜂∇2b. (5)

where the effective pressure is a sum of mechanical pressure and the magnetic pressure, divided by the
density of the medium

𝑃′
eff =

𝑃

𝜌
+ B0 · b
𝜌𝜇0

.

The total magnetic pressure is of course (B0 + b)2/2𝜌𝜇0, but given the previous assumption that B0 is
constant vector, and only the first-order terms are retained, using (B0 + b)2 in the numerator would be
equivalent to stating 2B0 · b, which is what has been obtained directly from (∇ × b) × B0.

1.2 Dispersion relation of the ideal system

Neglecting the pressure gradient, and neglecting the viscous as well as magnetic diffusion, the equations
can be combined into a second-order wave equation, in the form

𝜕2u
𝜕𝑡2

=
(B0 · ∇)2

𝜌𝜇0
u,

𝜕2b
𝜕𝑡2

=
(B0 · ∇)2

𝜌𝜇0
b, (6)

which, with a plane wave ansatz of any sort (equivalently converting the equation into frequency-
wavenumber domain), immediately yields the dispersion relation for Alfvén waves in diffusionless
medium

𝜔2 =
1
𝜌𝜇0

(k · B0)2 =
𝐵2

0
𝜌𝜇0

(
k · B̂0

)2
= 𝑉2

𝐴

(
k · B̂0

)2
. (7)

where B̂0 is the unit vector in the direction of B0, and𝑉𝐴 = 𝐵0/
√
𝜌𝜇0 is the Alfvén wave velocity, as will

become clearer in the next section. For the plane wave ansatz used in this article, please refer to eq.(9)
and the related texts in the remark box. Since reversing the sign on 𝜔 and k simultaneously would yield
the same physical solution (taking the real part of the complex wave yields the exact same expression,
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see remark box that follows), when describing the plane waves I shall take the convention that 𝜔 > 0.
Under this convention the dispersion relation can be further written as

𝜔 = ±𝑉𝐴
(
k · B̂0

)
=


𝑉𝐴

(
k · B̂0

)
, k · B̂0 > 0

−𝑉𝐴
(
k · B̂0

)
, k · B̂0 < 0

(8)

The two solutions for 𝜔 correspond to two propagation directions of the Alfvén wave. As will also
become clear later, Alfvén waves can either propagate in or opposite the direction of the background
magnetic field, which corresponds to the obtained two solutions.

It is already readily seen that Alfvén wave is an anisotropic wave. The isotropy is broken due to
the fact that background magnetic field is the essential cornerstone for providing the magnetic tension,
and the orientation of the magnetic field has a special status. It will also be seen that the orientation
of the background magnetic field greatly complicates the reflection-refraction problem, compared to
the isotropic waves, such as elastic waves, acoustic waves (seismic waves) and light waves in isotropic
medium. The anisotropy dictates that, for a given temporal frequency 𝜔,���k · B̂0

��� = 𝜔

𝑉𝐴

meaning the wave vector has a fixed projection length on the background field.

Plane wave ansatz for Alfvén waves

In this article I shall use the following convention for plane wave

A(r, 𝑡) = A0 exp {𝑖 (𝜔𝑡 − k · r)} , (9)

and the conventions for respective Fourier transforms follow. Some intermediate steps and results in this article will be
different by a sign compared to the alternative ansatz exp{𝑖(𝜔𝑡 + k · r)}, for instance the dispersion relation as shown in
eq.(8). In the other convention, k is opposite the direction in which the phase propagates, and 𝜔 = 𝑉𝐴(k · B̂0) would
represent a wave travelling in the opposite direction of B0.

In the ideal case without diffusion, it can be easily shown that the perturbation velocity field u and the magnetic field
b are proportional to one another. To this end, we can construct a plane wave solution for the perturbed fields

b = b0 exp{𝑖(𝜔𝑡 − k · r)}, u = u0 exp{𝑖(𝜔𝑡 − k · r)}.

The two waves share the same phase argument since their phases need to match in the coupled system of equations.
Substituting the expression into the first-order ideal equation yields

𝜕u
𝜕𝑡

=
B0 · ∇
𝜌𝜇0

b, =⇒ 𝑖𝜔u0 = −𝑖B0 · k
𝜌𝜇0

b0 =⇒ u0 = −𝑉𝐴(k · B̂0)
𝜔
√
𝜌𝜇0

b0.

Taking into account the dispersion relation, we have

u0 =


− b0√

𝜌𝜇0
, k · B̂0 > 0,

b0√
𝜌𝜇0

, k · B̂0 < 0.
(10)

Therefore, the perturbed magnetic field and the velocity field are opposite one another (or have a 𝜋 phase shift) when
the wave is propagating in the same direction of the background magnetic field, and the perturbed fields are completely
in-phase when the wave is propagating in the opposite direction of B0. Either way, the magnetic field and the velocity
field in Alfvén waves share the same polarization.
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1.3 Dispersion relation of the diffusive system

With viscous and magnetic diffusion, the system of equations cannot be easily combined into one wave
equation. Instead, the system of equations can be converted directly into frequency-wavenumber domain

𝑖𝜔u = −𝑖B0 · k
𝜌𝜇0

b − 𝜈𝑘2u,

𝑖𝜔b = −𝑖(B0 · k)u − 𝜂𝑘2b,
(11)

which can be rearranged into the linear system

(𝑖𝜔 + 𝜈𝑘2)u + 𝑖B0 · k
𝜌𝜇0

b = 0,

𝑖(B0 · k)u + (𝑖𝜔 + 𝜂𝑘2)b = 0.
(12)

Naturally, for the system to have nontrivial solutions, the necessary condition is

det

(
𝑖𝜔 + 𝜈𝑘2 𝑖

B0 ·k
𝜌𝜇0

𝑖(B0 · k) 𝑖𝜔 + 𝜂𝑘2

)
= −𝜔2 + 𝑖(𝜈 + 𝜂)𝑘2𝜔 + (B0 · k)2

𝜌𝜇0
+ 𝜈𝜂𝑘4 = 0

which is the dispersion relation for the diffusive system. The relation can be rearranged as a biquadratic
polynomial equation of 𝑘 ,

𝜈𝜂𝑘4 +
(
𝑉2
𝐴 cos2 𝛾 + 𝑖𝜔(𝜈 + 𝜂)

)
𝑘2 − 𝜔2 = 0 (13)

where I have used 𝛾 = ⟨B0, k⟩, and the defined Alfvén wave velocity 𝑉𝐴 = 𝐵0/
√
𝜌𝜇0. The roots of this

equation give the spatial branch of the dispersion relations

𝑘2 = −
𝑉2
𝐴

cos2 𝛾

2𝜈𝜂

(
1 + 𝑖 𝜔(𝜈 + 𝜂)

𝑉2
𝐴

cos2 𝛾

) 1 ±
√√√√

1 + 4𝜔2𝜈𝜂

𝑉4
𝐴

cos4 𝛾
(
1 + 𝑖𝜔 (𝜈+𝜂)

𝑉2
𝐴

cos2 𝛾

)2

 . (14)

The repetitive terms can be greatly simplified by introducing the notation

S𝜔 =
2𝑉2

𝐴

𝜔(𝜈 + 𝜂) (15)

and the spatial branch of the dispersion relation can be rewritten as

𝑘2 = −
𝑉2
𝐴

2𝜈𝜂

(
cos2 𝛾 + 𝑖2S−1

𝜔

) 1 ±
√√

1 + 4𝜔2𝜈𝜂

𝑉4
𝐴

(
cos2 𝛾 + 𝑖2S−1

𝜔

)2

 (16)

The notation S𝜔 defined as such represents the ratio between the diffusion time scale and the Alfvén
wave time scale, and is called the Lundquist number. In its general form, without specifying the length
scale of interest, the Lundquist number is written as

S =
𝜏𝛼

𝜏𝐴
=
𝐿2/𝛼
𝐿/𝑉𝐴

=
𝑉𝐴𝐿

𝛼
. (17)

Choosing specific diffusion mechanism (specifying 𝛼) and specific time scale (specifying 𝐿) yields a
variety of variants of Lundquist number. In this case, we see that the diffusion mechanism of interest is
the combined effect of viscous diffusion and magnetic diffusion; the length scale of interest is determined
by the Alfvén wavelength at specified frequency, i.e.

𝛼 ∼ 𝜈 + 𝜂
2

, 𝐿 ∼ 𝑉𝐴

𝜔
=⇒ S𝜔 =

𝑉2
𝐴
/𝜔

(𝜈 + 𝜂)/2
=

2𝑉2
𝐴

𝜔(𝜈 + 𝜂) .
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When Lundquist number S ≫ 1, Alfvén wave time scale is much smaller than that of diffusion time
scale; this means the damping of Alfvén waves at the specific length scale is small, and the propagation
of Alfvén waves is allowed in the system. When S ≪ 1, diffusion time scale is much smaller, and
diffusion process dominates the system at given length scale, prohibiting the effective propagation of
Alfvén waves. This can be readily seen from the dispersion relation, as follows.

At S𝜔 ≪ 1, the term S−1
𝜔 always dominates over other terms, reducing eq.(16) into the form

𝑘2 ≈ −𝑖
𝑉2
𝐴

2𝜈𝜂
2S−1

𝜔

(
1 ±

√︄
1 − 𝜔2𝜈𝜂

𝑉4
𝐴

S2
𝜔

)
= −𝑖 𝜔

2𝜈𝜂
(𝜈 + 𝜂 ± |𝜈 − 𝜂 |)

which gives the ultimate solutions

𝑘2
1 ≈ −𝑖 𝜔

min(𝜈, 𝜂) , 𝑘1 = ±1 − 𝑖
√

2

√︂
𝜔

min(𝜈, 𝜂) , (18)

𝑘2
2 ≈ −𝑖 𝜔

max(𝜈, 𝜂) , 𝑘2 = ±1 − 𝑖
√

2

√︂
𝜔

max(𝜈, 𝜂) . (19)

These solutions correspond to damped oscillations, which decays in the propagating direction. The
characteristic decaying length is given by 𝜆̄1 =

√︁
2 min(𝜈, 𝜂)/𝜔 and 𝜆̄2 =

√︁
2 max(𝜈, 𝜂)/𝜔, respectively.

The
√︁
𝜔/𝛼 scaling for 𝑘 , the characteristic wavelength scaling with

√︁
𝛼/𝜔 and the feature of damped

oscillation reveal that these solutions correspond to Stokes-type boundary layers. The oscillation and
damping is simply governed by the diffusion process, but not the magnetic tension.

At S𝜔 ≫ 1, or 𝑉2
𝐴
≫ 𝜔(𝜈 + 𝜂) ≥ 2𝜔√𝜈𝜂, we expect to recover the regime where magnetic tension

is important in the system, producing the propagation of Alfvén waves. Given some value of 𝛾 so that
cos 𝛾 ∼ 1 is at some finite magnitude, the inverse Lundquist number S−1

𝜔 will always be small compared
to cos2 𝛾. To see the effect of diffusion in the system we can keep S−1

𝜔 in eq.(16) to its leading order,

𝑘2 = −
𝑉2
𝐴

cos2 𝛾

2𝜈𝜂

(
1 + 𝑖 2

S𝜔 cos2 𝛾

) 1 ±

√√
1 + 4𝜔2𝜈𝜂

𝑉4
𝐴

cos4 𝛾

(
1 + 𝑖 2

S𝜔 cos2 𝛾

)−2
≈ −

𝑉2
𝐴

cos2 𝛾

2𝜈𝜂

(
1 + 𝑖 2

S𝜔 cos2 𝛾

) [
1 ±

(
1 + 2𝜔2𝜈𝜂

𝑉4
𝐴

cos4 𝛾

(
1 − 𝑖 4

S𝜔 cos2 𝛾

))]
which gives two ultimate solutions

𝑘2
1 ≈ −

𝑉2
𝐴

𝜈𝜂

(
cos2 𝛾 + 𝑖2S−1

𝜔

)
, 𝑘1 ≈ ±𝑉𝐴 cos 𝛾

√
𝜈𝜂

(
− 1

S𝜔 cos2 𝛾
+ 𝑖

)
, (20)

𝑘2
2 ≈ 𝜔2

𝑉2
𝐴

cos2 𝛾

(
1 − 𝑖 2

S𝜔 cos2 𝛾

)
, 𝑘2 ≈ ± 𝜔

𝑉𝐴 cos 𝛾

(
1 − 𝑖 1

S𝜔 cos2 𝛾

)
. (21)

The first solution 𝑘1 has a dominant imaginary part. In the case where S−1
𝜔 ≪ 1 is negligible this can

be simply written as 𝑘1 ≈ ±𝑖𝑉𝐴 cos 𝛾/√𝜈𝜂 = ±𝑖/𝛿. This correspond to a Hartmann boundary layer.
Properties of this layer is listed below.

Hartmann boundary layer

The thickness, or the characteristic length scale over which the wave decays in a Hartmann layer, is given by

𝛿BL =

√
𝜈𝜂

𝑉𝐴 | cos 𝛾 | =
√
𝜌𝜇0𝜈𝜂

𝐵0 | cos 𝛾 | =
1
𝐵∥

√︂
𝜌𝜈

𝜎
. (22)

Here 𝐵∥ = |𝐵0 · k̂| is the magnetic field strength in line with the wave vector. The boundary layer thickness scales
with √

𝜈𝜂/𝑉𝐴, and hence goes to zero when 𝜈, 𝜂 → 0. Nevertheless, an infinitely small Hartmann layer might be able
to accommodate finite velocity and magnetic field discontinuity at the boundary ([is this true?]), just like the free-slip
boundary condition for inviscid fluid. The reason for that is the infinite conductivity assumption, which allows infinitely
large current in the system, giving rise to magnetic field discontinuity. This boundary layer seems to play an important
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role in constructing solutions that satisfy continuity boundary conditions across the interface (Schaeffer, Jault, et al.
2012), even at high Lundquist numbers.

The thickness of the Hartmann boundary layer is another important length scale of the system. When variation
occurs on a length scale comparable to or smaller than 𝛿BL, the viscous and magnetic diffusion wins over, and promotes
boundary layer behaviour; when the length scale of variation is much larger than 𝛿BL, the magnetic tension is much more
effective. This motivates the introduction of a dimensionless number, Hartmann number, which, supposedly, is the ratio
of Lorentz force to viscous force. It can also be interpreted as the ratio of some characteristic length scale to the Hartmann
layer thickness

Ha = 𝐵𝐿

√︂
𝜎

𝜌𝜈
=

𝐿

𝛿BL
. (23)

For Hartmann layer, the amplitudes of u and b follow a relation different from the travelling wave solution. Recall
at high Lundquist number, 𝑉2

𝐴
≫ 𝜔𝜂, the first-order equation gives

u =
𝑖B0 · k

𝜌𝜇0 (𝑖𝜔 + 𝜈𝑘2)
b ≈

∓𝐵0
𝑉𝐴 cos2 𝛾√

𝜈𝜂

𝜌𝜇0
𝑉2
𝐴

𝜂 cos2 𝛾
b = ∓

√︂
𝜂

𝜈

b
√
𝜌𝜇0

= ∓Pm−1/2 b
√
𝜌𝜇0

where Pm = 𝜈
𝜂 is the magnetic Prandtl number. Not surprisingly, the amplitude in such boundary layer is skewed towards

the field with smaller diffusion.

The second solution 𝑘2 reduces to the dispersion relation of Alfvén waves in diffusionless medium,
i.e. 𝑘2 = ±𝜔/𝑉𝐴 cos 𝛾, when S−1

𝜔 is dropped from the multiplier (eq.8). To first order, the role of non-
negligible diffusion is to introduce damping with the coefficient 1/S𝜔 cos2 𝛾 = 𝜔(𝜈 + 𝜂)/2𝑉2

𝐴
cos2 𝛾,

which mildly damps the Alfvén wave as it propagates.
At the mildly diffusive limit S𝜔 ≫ 1, both solutions are anisotropic. For the Hartmann boundary

layer solution, the thickness or spatial decay rate is constrained by the projection of magnetic field on
the wave vector. For the travelling Alfvén wave solution, the wavenumber is also determined by the
projection of the magnetic field on the wave vector. Conversely, it means the wave vectors in both
solutions are only controlled in the direction of the background field.

1.4 Phase and group velocities

Phase velocity is the velocity at which the phase of a monochromatic wave travels. Given that a plane
wave takes the form exp(𝑖(𝜔𝑡 − k · r)) = exp(𝑖k · (𝜔𝑡k̂/𝑘 − r)), the phase velocity is given by

c𝑝 =
𝜔

𝑘
k̂. (24)

Apparently, the phase velocity always has the same direction as the wave vector. The wave vector for
plane wave is exactly the indicator of phase propagation. When a collection of waves is present (in
reality there is almost never standalone monochromatic plane wave, since that implies infinite energy),
the velocity at which the wave packet near a frequency travels is different from the phase velocity. This
is called the group velocity, and is given by

c𝑔 = ∇𝑘𝜔. (25)

Since wave packets and wave groups are the carrier of information and energy, group velocity is considered
to be the velocity at which information and energy propagates. Although this seems to be true in many
cases, I argue that this cannot replace the energy argument. Group velocity is a mathematical property,
a property that arises due to the mathematical form of wave ansätze; energy flux is a physical property,
which does not seem to be strictly linked to the wave ansatz a priori.

Both phase velocity and the group velocity can be derived from the dispersion relations. The
dispersion relation with finite S𝜔 is complicated, and would give rise to dispersive waves. The Alfvén
wave in ideal, diffusionless medium, however, is simple. The phase velocity is given by

c𝑝 =
𝜔

𝑘
k̂ =


𝑉𝐴(k̂ · B̂0)k̂ = 𝑉𝐴 cos 𝛾 k̂ =

B0 · k̂
√
𝜌𝜇0

k̂, k · B̂0 > 0

−𝑉𝐴(k̂ · B̂0)k̂ = −𝑉𝐴 cos 𝛾 k̂ = −B0 · k̂
√
𝜌𝜇0

k̂, k · B̂0 < 0
(26)
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which can be uniformly written as
c𝑝 = 𝑉𝐴| cos 𝛾 | k̂. (27)

The magnitude of the phase velocity of Alfvén wave is fixed, as long as the orientation of the wave
propagation is fixed. In this sense, Alfvén wave is diffusionless. Among all the direction of waves, the
wave that propagates along the background field propagates the fastest.

For isotropic waves such as seismic waves and light waves in isotropic medium, not only are the
waves dispresionless, but c𝑝 ∥ c𝑔. This is not the case for anisotropic waves as Alfvén wave. While
the phase can travel in any direction except normal to the background field, the group velocity is always
aligned with the background field

c𝑔 = ∇𝑘𝜔 =


𝑉𝐴B̂0 =

B0√
𝜌𝜇0

, k · B̂0 > 0,

−𝑉𝐴B̂0 = − B0√
𝜌𝜇0

, k · B̂0 < 0.
(28)

For an Alfvén wave propagating (in the sense of c𝑝 or k) in the direction that forms an angle 𝛾 < 𝜋/2
with the magnetic field B0, i.e. downwind, the group velocity is in the direction of B0. For an Alfvén
wave propagating upwind, the group velocity is opposite the direction of B0. Either way, the magnitude
of group velocity is always given by the Alfvén wave velocity 𝑉𝐴.

1.5 Energy and energy flux

[Energy properties, I don’t think I understand the energy perspective well enough.]
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2 1-D Reflection at solid boundary

Reflection of Alfvén waves at fluid-solid boundaries in 1-D has been studied by Schaeffer, Jault, et
al. (2012) for insulating solid boundaries, and Schaeffer and Jault (2016) for solid boundaries with a
conductive layer. In both of these cases, the solution in the fluid is composed of (i) an incoming travelling
Alfvén wave, (ii) a reflected travelling Alfvén wave, and (iii) a Hartmann layer. The solution is then
complemented with boundary conditions on the fluid-solid boundary. In the presence of conductive
layer in the solid wall, the solution in the fluid part is further paired with a purely electromagnetic wave
solution in the conductive layer. The solution of the electromagnetic wave in the conductive or insulating
solid in its general form is given in the following box.

Electromagnetic waves in the solid

As preliminary information, I collect here the solutions and dispersion relations of EM waves in the solid. To ensure
that in the insulating limit, the equation does not degenerate into Possion’s equation, where the energy flux is no longer
present, I shall keep the displacement currents. Assuming negligible fluctuation in electric permittivity and magnetic
permeability, the Maxwell equations in the electrically neutral solid interior take the form in the Fourier domain

∇ · E = 0
∇ × E = −𝑖𝜔B
∇ · B = 0
∇ × B = 𝜇0𝜎E + 𝑖𝜔𝜇0𝜀0E

(29)

Recall that the light speed 𝑐 = 1/√𝜇0𝜀0, the magnetic diffusivity 𝜂 = 1/𝜇0𝜎, and take the curl of the Ampere’s law, we
arrive at the (damped) wave equation of either B or E

∇2B − 𝑖 𝜔
𝜂

B + 𝜔
2

𝑐2 B = 0 (30)

where 𝜔/𝜂 serves as a damping term to the equation. Transforming the equation further into the wavenumber domain,
we obtain the dispersion relation

𝑘2 = −𝑖 𝜔
𝜂
+ 𝜔

2

𝑐2 = −𝑖𝜔𝜇0𝜎 + 𝜔2𝜇0𝜀0. (31)

The contribution is clear-cut: conduction current contributes to the first term on the right-hand-side, while displacement
current contributes to the latter term. In the limit of absolute insulator, all one needs to do is to remove the first term. The
solutions are more explicitly given by

𝑘 = ±𝜔
𝑐

√√√√
1
2

©­«1 +

√︄
1 + 𝑐4

𝜔2𝜂2
ª®¬ ∓ 𝑖 𝜔𝑐

√√√√
1
2

©­«−1 +

√︄
1 + 𝑐4

𝜔2𝜂2
ª®¬

= ±𝜔
𝑐

√√√
1
2

(
1 +

√︄
1 + 𝜎2

𝜔2𝜀2
0

)
∓ 𝑖 𝜔

𝑐

√√√
1
2

(
−1 +

√︄
1 + 𝜎2

𝜔2𝜀2
0

)
.

(32)

We consider two limits. In the quasi-static limit, where 𝜎 ≫ 𝜔𝜀0, the conduction current dominates, leading to the
dispersion relation

𝑘 = ±1 − 𝑖
√

2
√
𝜔𝜎𝜇0 = ±1 − 𝑖

√
2

√︂
𝜔

𝜂
= ±1 − 𝑖

𝛿𝑠
. (33)

This yields the so-called skin-depth, defined as 𝛿𝑠 =
√︁

2/𝜔𝜎𝜇0 =
√︁

2𝜂/𝜔. The electromagnetic field decays at this length
scale, and the resulting solution is a strongly damped oscillation, analogous to the Stokes boundary layer. At the other
limit, 𝜎 ≪ 𝜔𝜀0, we recover the mildly diffusive travelling wave

𝑘 = ±𝜔
𝑐
∓ 𝑖 𝜎

2

√︂
𝜇0
𝜀0

= ±𝜔
𝑐
∓ 𝑖 𝑐

2𝜂
, (34)

where the length scale on which the field decays ∼ 𝜂/𝑐 is much greater than the wavelength of the electromagnetic wave
𝜆 ∼ 𝑐/𝜔. In particular, if we take it to the insulating limit, i.e. 𝜎 → 0 or 𝜂 → +∞, we recover the electromagnetic wave
in the absolutely insulating medium, equivalent to the propagation in vacuum 𝑘 = 𝜔/𝑐.

8



2.1 Normal incidence at insulating solid wall

This scenario is treated in Schaeffer, Jault, et al. (2012).

2.1.1 Problem setup

We consider the incidence of an Alfvén wave travelling in the 𝑧-direction at the fluid-solid interface,
located at 𝑧 = 0. A fluid of density 𝜌 occupies the space 𝑧 < 0, and an insulating solid occupies the
space 𝑧 > 0. The uniform magnetic field B0 is directed in the 𝑧-direction, i.e. B0 = 𝐵0ẑ. The setup is
representative of a plane Alfvén wave impinging normal to the interface, in a background field normal
to the interface.

Figure 1: Setup of Alfvén wave normal incidence at insulating boundary

As one would imagine, the problem is purely 1-D, and can be described by 1-D version of the
governing equations (see Schaeffer, Jault, et al. 2012). Here I proceed directly to stating the plane wave
solutions in 1-D, simply by taking k = 𝑘 ẑ and B0 = 𝐵0ẑ and picking the polarization in the 𝑦-direction.
Naturally 𝛾 = 0 follows. According to the dispersion relation at high Lundquist number, we have the
travelling wave solution

b+ = 𝑏+ŷ exp
{
𝑖𝜔

(
𝑡 − 𝑧

𝑉𝐴

)}
, u+ = 𝑢+ŷ exp

{
𝑖𝜔

(
𝑡 − 𝑧

𝑉𝐴

)}
= − 𝑏+ŷ

√
𝜌𝜇0

exp
{
𝑖𝜔

(
𝑡 − 𝑧

𝑉𝐴

)}
(35)

b− = 𝑏−ŷ exp
{
𝑖𝜔

(
𝑡 + 𝑧

𝑉𝐴

)}
, u− = 𝑢−ŷ exp

{
𝑖𝜔

(
𝑡 + 𝑧

𝑉𝐴

)}
= + 𝑏−ŷ

√
𝜌𝜇0

exp
{
𝑖𝜔

(
𝑡 − 𝑧

𝑉𝐴

)}
(36)

where b+ and u+ give the wave travelling in the positive 𝑧-direction, in the same direction as B0, and b−

and u− give the wave travelling in the negative 𝑧-direction. In addition to that, we have the Hartmann
boundary layer solution, which takes the form

bBL = 𝑏BLŷ exp
{
𝑖𝜔𝑡 + 𝑉𝐴𝑧√

𝜈𝜂

}
, uBL = 𝑢BL exp

{
𝑖𝜔𝑡 + 𝑉𝐴𝑧√

𝜈𝜂

}
= − 1

√
Pm

bBL
√
𝜌𝜇0

(37)

These are already solutions to the Alfvén wave equation in high Lundquist number approximation.
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With magnetic and viscous diffusion both present, the system requires no-slip boundary condition for
kinematics, and continuity of magnetic field for electromagnetic boundary conditions. The continuity of
electric field is automatically satisfied given these two conditions. Within the insulating solid wall, the
magnetic field is zero. This seems to be a non-trivial assumption, but may be justified in the 1-D case
either by invoking finite energy, or by arguing that the toroidal field in the half space needs to be zero.
[Is this really the case? Or is it actually necesary to invoke another wave in the insulating media and
imposing continuity of electric field?] The consequence is that instead of constructing simultaneously the
solution within the solid region, we can simply impose the homogeneous Dirichlet boundary conditions

𝑢𝑦 |𝑧=0− = 0, 𝑏𝑦 |𝑧=0− = 0. (38)

These completes the system of equations.

2.1.2 Solutions for reflected wave and boundary layer

Substituting the ansatz

𝑏𝑦 = 𝑏
+ exp

{
𝑖𝜔

(
𝑡 − 𝑧

𝑉𝐴

)}
+ 𝑏− exp

{
𝑖𝜔

(
𝑡 + 𝑧

𝑉𝐴

)}
+ 𝑏BL exp

{
𝑖𝜔𝑡 + 𝑉𝐴𝑧√

𝜈𝜂

}
,

𝑢𝑦 = − 𝑏+
√
𝜌𝜇0

exp
{
𝑖𝜔

(
𝑡 − 𝑧

𝑉𝐴

)}
+ 𝑏−
√
𝜌𝜇0

exp
{
𝑖𝜔

(
𝑡 + 𝑧

𝑉𝐴

)}
− Pm− 1

2 𝑏BL
√
𝜌𝜇0

exp
{
𝑖𝜔𝑡 + 𝑉𝐴𝑧√

𝜈𝜂

} (39)

into the two boundary conditions, we find that the phases of the terms naturally match (in 1-D there is no
spatial depedency of the phase on 𝑂𝑥𝑦 plane, so phase-matching is a trivial condition). The amplitudes
satisfy the equations

𝑏+ + 𝑏− + 𝑏BL = 0,

𝑏+ − 𝑏− + Pm− 1
2 𝑏BL = 0,

(40)

which yield the solutions
𝑏BL

𝑏+
= − 2

√
Pm

1 +
√

Pm
,

𝑢BL

𝑢+
= − 2

1 +
√

Pm
, (41)

𝑅𝑏 =
𝑏−

𝑏+
= −1 −

√
Pm

1 +
√

Pm
, 𝑅𝑢 =

𝑢−

𝑢+
=

1 −
√

Pm
1 +

√
Pm

. (42)

Eq.(42) gives the reflection coefficients for the magnetic field and the velocity field, and eq.(41) gives
the amplitudes of the fields in the Hartmann layer. All of the aforementioned coefficients depend solely
on the magnetic Prandtl number.

2.2 Normal incidence at conductive layer

This scenario is treated in Schaeffer and Jault (2016).

2.2.1 Problem setup

The setup of the problem is almost identical to the previous, except for a conductive layer of electrical
conductivity 𝜎𝑤 and thickness ℎ. This changes two things in the previous setup. First, there can be a
purely electromagnetic field in the conductive solid wall, where the wavenumber of the electromagnetic
wave can be directly taken from the previous box

𝑘𝑤 =

√︂
𝜔𝜇0𝜎𝑤

2
(1 − 𝑖) =

√︂
𝜔

2𝜂𝑤
(1 − 𝑖) = 1 − 𝑖

𝛿𝑤
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Figure 2: Setup of Alfvén wave normal incidence at insulating boundary

where 𝛿𝑤 =
√︁

2𝜂𝑤/𝜔 =
√︁

2/𝜔𝜇0𝜎𝑤 is the electromagnetic skin depth of the conductive wall. This gives
the general solution in the form of

b𝑤 = 𝑏+𝑤 ŷ exp{𝑖(𝜔𝑡 + 𝑘𝑤𝑧)} + 𝑏−𝑤 ŷ exp{𝑖(𝜔𝑡 − 𝑘𝑤𝑧)}

= 𝑏+𝑤 ŷ exp
{
𝑖

(
𝜔𝑡 +

√︂
𝜔𝜇0𝜎𝑤

2
(1 − 𝑖)𝑧

)}
+ 𝑏−𝑤 ŷ exp

{
𝑖

(
𝜔𝑡 −

√︂
𝜔𝜇0𝜎𝑤

2
(1 − 𝑖)𝑧

)}
= 𝑏+𝑤 ŷ exp

{
𝑖

(
𝜔𝑡 +

√︂
𝜔

2𝜂𝑤
(1 − 𝑖)𝑧

)}
+ 𝑏−𝑤 ŷ exp

{
𝑖

(
𝜔𝑡 −

√︂
𝜔

2𝜂𝑤
(1 − 𝑖)𝑧

)}
= 𝑏+𝑤 ŷ exp

{
𝑖

(
𝜔𝑡 + (1 − 𝑖) 𝑧

𝛿𝑤

)}
+ 𝑏−𝑤 ŷ exp

{
𝑖

(
𝜔𝑡 − (1 − 𝑖) 𝑧

𝛿𝑤

)}
.

(43)

Second, now that the continuous magnetic boundary condition cannot be imposed as a homogeneous
Dirichlet boundary condition at 𝑧 = 0. Instead, the magnetic boundary condition needs to be split into
two conditions, one at 𝑧 = 0, linking b in the fluid and b𝑤 , the other at 𝑧 = ℎ, linking b𝑤 to the insulating
half space. The two conditions are

𝑏𝑦 |𝑧=0− = 𝑏𝑤𝑦 |𝑧=0+ , 𝑏𝑦 |𝑧=ℎ− = 0. (44)

The magnetic boundary condition is complemented by the electric boundary condition,

E|𝑧=0− = [𝜂∇ × B − u × B] |𝑧=0− = [𝜂∇ × B] |𝑧=0+ = E|𝑧=0+

which, in the absence of velocity at the boundary, yields

𝜂
𝜕𝑏𝑦

𝜕𝑧

����
𝑧=0−

= 𝜂𝑤
𝜕𝑏𝑦

𝜕𝑧

����
𝑧=0+

. (45)

[Why is continuity of electric field not enforced at the insulating wall? It is not naturally fulfilled, and
the electric field at the boundary is actually not zero.] Finally, the kinematic boundary condition, i.e. the
no-slip boundary condition, remains the same.
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2.2.2 Solutions for magnetic and velocity fields

Substituting the ansatz

𝑏𝑦 =


𝑏+ exp

{
𝑖𝜔

(
𝑡 − 𝑧

𝑉𝐴

)}
+ 𝑏− exp

{
𝑖𝜔

(
𝑡 + 𝑧

𝑉𝐴

)}
+ 𝑏BL exp

{
𝑖𝜔𝑡 + 𝑉𝐴𝑧√

𝜈𝜂

}
, 𝑧 < 0

𝑏+𝑤 exp
{
𝑖

(
𝜔𝑡 +

√︂
𝜔

2𝜂𝑤
(1 − 𝑖)𝑧

)}
+ 𝑏−𝑤 exp

{
𝑖

(
𝜔𝑡 −

√︂
𝜔

2𝜂𝑤
(1 − 𝑖)𝑧

)}
, 𝑧 > 0

𝑢𝑦 = − 𝑏+
√
𝜌𝜇0

exp
{
𝑖𝜔

(
𝑡 − 𝑧

𝑉𝐴

)}
+ 𝑏−
√
𝜌𝜇0

exp
{
𝑖𝜔

(
𝑡 + 𝑧

𝑉𝐴

)}
− 𝑏BL
√

Pm√
𝜌𝜇0

exp
{
𝑖𝜔𝑡 + 𝑉𝐴𝑧√

𝜈𝜂

} (46)

into the kinematic (no-slip, one scalar eq.) and electromagnetic (two scalar eqs.(44) for the magnetic
field and one scalar eq.(45) for the electric field) boundary conditions, we arrive at a system of four linear
equations of 𝑏+, 𝑏−, 𝑏BL, 𝑏+𝑤 and 𝑏−𝑤 ,

− 1
√
𝜌𝜇0

𝑏+ + 1
√
𝜌𝜇0

𝑏− − Pm− 1
2

1
√
𝜌𝜇0

𝑏BL = 0,

𝑏+ + 𝑏− + 𝑏BL = 𝑏+𝑤 + 𝑏−𝑤 ,
𝑏+𝑤 exp {𝑖𝑘𝑤ℎ} + 𝑏−𝑤 exp {−𝑖𝑘𝑤ℎ} = 0,

−𝑖 𝜔
𝑉𝐴
𝜂𝑏+ + 𝑖 𝜔

𝑉𝐴
𝜂𝑏− +

√︂
𝜂

𝜈
𝑉𝐴𝑏

BL = 𝑖𝑘𝑤𝜂𝑤𝑏
+
𝑤 − 𝑖𝑘𝑤𝜂𝑤𝑏−𝑤 ,

(47)

which are then rearranged into

−𝑏− + Pm− 1
2 𝑏BL = −𝑏+

𝑏− + 𝑏BL − 𝑏+𝑤 − 𝑏−𝑤 = −𝑏+

𝑒𝑖𝑘𝑤ℎ𝑏+𝑤 + 𝑒−𝑖𝑘𝑤ℎ𝑏−𝑤 = 0
𝜔

𝑉𝐴
𝜂𝑏− − 𝑖 𝑉𝐴√

Pm
𝑏BL − 𝑘𝑤𝜂𝑤𝑏+𝑤 + 𝑘𝑤𝜂𝑤𝑏−𝑤 =

𝜔

𝑉𝐴
𝜂𝑏+.

(48)

The quantities 𝑏−, 𝑏BL, 𝑏+𝑤 and 𝑏−𝑤 can then be solved as a function of 𝑏+. The most informative quantity
here is 𝑏−/𝑏+, i.e. the reflection coefficient of the boundary. It is also relatively easy to solve. The
roadmap to solve this can be summarized as follows. First, from the first equation one can express 𝑏BL as
a function of 𝑏− and 𝑏+. Using the third equation one can establish the ratio between 𝑏+𝑤 and 𝑏−𝑤 , which
can be used to derive the expression in terms of 𝑏+ and 𝑏−. Finally, we can plug the expressions into the
fourth equation, and arrive at

𝑅𝑏 =
𝑏−

𝑏+
=

𝜔
𝑉𝐴
𝜂 − 𝑖𝑉𝐴 + 𝑘𝑤𝜂𝑤 1+𝑒𝑖2𝑘𝑤ℎ

1−𝑒𝑖2𝑘𝑤ℎ

(
1 −

√
Pm

)
𝜔
𝑉𝐴
𝜂 − 𝑖𝑉𝐴 − 𝑘𝑤𝜂𝑤 1+𝑒𝑖2𝑘𝑤ℎ

1−𝑒𝑖2𝑘𝑤ℎ

(
1 +

√
Pm

) = −
1 −

√
Pm − 𝑖 𝑉𝐴

𝑘𝑤𝜂𝑤

(
1 + 𝑖 𝜔𝜂

𝑉2
𝐴

)
1−𝑒𝑖2𝑘𝑤ℎ

1+𝑒𝑖2𝑘𝑤ℎ

1 +
√

Pm + 𝑖 𝑉𝐴

𝑘𝑤𝜂𝑤

(
1 + 𝑖 𝜔𝜂

𝑉2
𝐴

)
1−𝑒𝑖2𝑘𝑤ℎ

1+𝑒𝑖2𝑘𝑤ℎ

. (49)

Recall the travelling wave solution as well as the aforementioned Hartmann layer solution implicitly
assumed high Lundquist number, and under this assumption we have

𝑆𝜔 =
2𝑉2

𝐴

𝜔(𝜈 + 𝜂) ≫ 1,
𝜔𝜂

𝑉2
𝐴

≤ 𝜔(𝜈 + 𝜂)
𝑉2
𝐴

=
2
𝑆𝜔

≪ 1.

Therefore the imaginary term in the bracket scales as S𝜔−1, and is negligible at high Lundquist number.
The reflection coefficients are then

𝑅𝑏 ≈ −
1 −

√
Pm − 𝑖 𝑉𝐴

𝜂𝑤𝑘𝑤

1−exp{𝑖2𝑘𝑤ℎ}
1+exp{𝑖2𝑘𝑤ℎ}

1 +
√

Pm + 𝑖 𝑉𝐴

𝜂𝑤𝑘𝑤

1−exp{𝑖2𝑘𝑤ℎ}
1+exp{𝑖2𝑘𝑤ℎ}

= −1 −
√

Pm −𝑄(𝜔)
1 +

√
Pm +𝑄(𝜔)

,

𝑅𝑢 ≈ +
1 −

√
Pm − 𝑖 𝑉𝐴

𝜂𝑤𝑘𝑤

1−exp{𝑖2𝑘𝑤ℎ}
1+exp{𝑖2𝑘𝑤ℎ}

1 +
√

Pm + 𝑖 𝑉𝐴

𝜂𝑤𝑘𝑤

1−exp{𝑖2𝑘𝑤ℎ}
1+exp{𝑖2𝑘𝑤ℎ}

= +1 −
√

Pm −𝑄(𝜔)
1 +

√
Pm +𝑄(𝜔)

,

(50)
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where the frequency-dependent complex dimensionless quantity 𝑄(𝜔) is given by

𝑄(𝜔) = 𝑖 𝑉𝐴

𝑘𝑤𝜂𝑤

1 − 𝑒𝑖2𝑘𝑤ℎ
1 + 𝑒𝑖2𝑘𝑤ℎ

=
𝑉𝐴

𝑘𝑤𝜂𝑤
tan 𝑘𝑤ℎ =

𝑉𝐴𝛿𝑤

𝜂𝑤
(1 − 𝑖) tan

(
(1 − 𝑖) ℎ

𝛿𝑤

)
. (51)

This is a central dimensionless number in quantifying the effect of finite conductivity at boundary. At the
insulating limit, i.e. 𝜂𝑤 → +∞ and 𝑘𝑤 → 0, we have 𝑄(𝜔) ∼ 𝑉𝐴/𝜂𝑤 → 0, and recover the reflection
relation for insulating boundary (eq.42). In general, when |𝑘𝑤ℎ| ∼ ℎ/𝛿𝑤 ≪ 1, the linear approximation
of the exponential can be used, which yields

𝑄(𝜔) ≈ 𝑖 𝑉𝐴

𝑘𝑤𝜂𝑤

−𝑖2𝑘𝑤ℎ
2

=
𝑉𝐴ℎ

𝜂𝑤
= 𝜇0𝑉𝐴𝜎𝑤ℎ =

√︂
𝜇0

𝜌
𝐵0𝐺 (52)

where 𝐺 = 𝜎𝑤𝛿 is the total conductance in the layer. This approximation is coined the thin-layer
approximation, since it assumes the wall thickness 𝛿 to be much smaller than the skin depth in the wall
𝛿𝑤 . At this limit the quantity 𝑄 is frequency-independent.

For completeness, other quantities of interest are related to the reflection coefficients via

𝑏BL

𝑏+
=
√

Pm (𝑅𝑏 − 1) = − 2
√

Pm
1 +

√
Pm +𝑄(𝜔)

,

𝑏+𝑤
𝑏+

=
1

1 − 𝑒𝑖2𝑘𝑤ℎ
(
1 −

√
Pm + (1 +

√
Pm)𝑅𝑏

)
=

1
1 − 𝑒𝑖2𝑘𝑤ℎ

2𝑄(𝜔)
1 +

√
Pm +𝑄(𝜔)

,

𝑏−𝑤
𝑏+

=
−𝑒𝑖2𝑘𝑤ℎ

1 − 𝑒𝑖2𝑘𝑤ℎ
(
1 −

√
Pm + (1 +

√
Pm)𝑅𝑏

)
=

−𝑒𝑖2𝑘𝑤ℎ
1 − 𝑒𝑖2𝑘𝑤ℎ

2𝑄(𝜔)
1 +

√
Pm +𝑄(𝜔)

.

(53)

Electromagnetic boundary condition at insulating boundary

Here I try to start from first principles and derive the electromagnetic boundary condition at an insulating wall. The fact
that only the continuity of magnetic field is enforced at the interface is not well justified at first glance, and would require
more than intuition to understand.

Regardless of the specific setting, for the interface where a conductor comes in contact with an insulator, the current
density in the system is always finite; in other words, there is no electric currents that can be concentrated in an infinitely
thin layer, i.e. no current sheet. This leads to the following continuities at the boundary

n̂ · B|Σ− = n̂ · B|Σ+

n̂ × B|Σ− = n̂ × B|Σ+

n̂ × E|Σ− = n̂ × E|Σ+ .

(54)

These indicate continuity of magnetic field, and the continuity of tangent electric field. In general, there might be
discontinuity in the normal electric field at conductor-insulator boundaries, which would then require sheet electric
charges. In the 1-D scenarios of Alfvén waves presented here, however, there is no electric field normal to the boundary.

First, let us consider the interface between an electrically conductive solid and an insulating solid. In the conductive
region, we assume that the temporal variation is relatively slow so that the displacement current can be neglected. The
electromagnetic fields are then related via

∇ × E = −𝑖𝜔B, ∇ × B = 𝜎𝜇0E =
1
𝜂

E.

In the insulating region, the electromagnetic fields are related via

∇ × E = −𝑖𝜔B, ∇ × B = 𝑖𝜔𝜀0𝜇0E = 𝑖
𝜔

𝑐2 E.

The two different mechanisms result in very different characteristic length scales of variation. In conductive medium
where the diffusive term dominates, the length scale is given by the skin depth

𝐿cond = 𝛿𝑠 =

√︂
2𝜂
𝜔

=

√︄
2

𝜔𝜇0𝜎
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while in insulating medium where the wave term dominates, the length scale is the wavelength

𝐿insl = 𝜆̄ =
𝑐

𝜔
=

1
𝜔
√
𝜇0𝜀0

.

The distinctive length scale results in fundamentally different amplitude distributions among electric and magnetic field.(
𝐵

𝐸

)
cond

∼ 1
𝜔𝐿cond

∼ 𝐿cond
𝜂

∼ 1
√
𝜔𝜂(

𝐵

𝐸

)
insl

∼ 1
𝜔𝐿insl

∼ 𝜔𝐿insl
𝑐2 ∼ 1

𝑐
.

(55)

Invoking the dimensionless quantity

𝜖 =
|𝜀0𝜕𝑡E|
|𝜎E| ∼ 𝜔𝜂

𝑐2 =
𝜔𝜀0
𝜎

which is again the quantity that thresholds whether displacement current can be neglected or not, we see that if the electric
fields are of matching amplitudes on both sides, then the magnetic fields are of relative magnitudes(

𝐵Σ+

𝐵Σ−

)
≈
√
𝜖 (56)

The light speed 𝑐 ≈ 3 × 108m · s−1. For scenarios relevant to the Earth core, 𝜂 ≈ 1m2 · s−1. Therefore, even processes
that vary on the scale of seconds has values 𝜖 ∼ 10−17; processes that are of lower frequencies have even lower 𝜖 . In
short, the magnetic field in the insulating wall derived this way will be very much marginal compared to the field in the
conductive counterpart. Viewed from the conductive medium, this is practically zero.

[This apparently holds in plane waves, but why does this relation not hold in spherical geometry? In geodynamo
simulations, it seems the boundary condition for poloidal field is not homogeneous Dirichlet BC.]

To illustrate the effect, I redo the problem of Alfvén waves impinging on an insulating wall, this time with electric
boundary condition included. At the same time, the solution in the insulating wall should also be constructed, which
takes the form of

𝑏𝑦 = 𝑏𝑤 exp
{
𝑖𝜔

(
𝑡 − 𝑧

𝑐

)}
.

The three boundary conditions thus yield

𝑏+ + 𝑏− + 𝑏BL = 𝑏𝑤 ,

𝑏+ − 𝑏− + Pm− 1
2 𝑏BL = 0,

−𝑖𝜂 𝜔
𝑉𝐴

𝑏+ + 𝑖𝜂 𝜔
𝑉𝐴

𝑏− +
√︂
𝜂

𝜈
𝑉𝐴𝑏

BL = −𝑐𝑏𝑤

The reflection coefficient in this case is given by

𝑅𝑏 =
𝑏−

𝑏+
= −

1 −
√

Pm −
(
𝑖
𝜔𝜂
𝑐𝑉𝐴

+ 𝑉𝐴

𝑐

)
1 +

√
Pm +

(
𝑖
𝜔𝜂
𝑐𝑉𝐴

+ 𝑉𝐴

𝑐

) = −
1 −

√
Pm − 𝛽𝐴

(
1 + 𝑖𝑆−1

𝜂

)
1 +

√
Pm + 𝛽𝐴

(
1 + 𝑖𝑆−1

𝜂

) , (57)

where 𝑆𝜂 is the frequency-dependent Lundquist number for magnetic diffusion, and 𝛽𝐴 = 𝑉𝐴/𝑐 is the ratio between
Alfvén speed and light speed. Since Alfvén waves and electromagnetic waves operate at fundamentally different speeds
(𝛽𝐴 ∼ 10−11 − 1010), the modification to the original formulae is negligible.
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3 Boundary layers oscillating along the boundary

We have seen in the derivation of Hartmann layers that viscous and magnetic diffusion results in a
boundary layer solution decaying exponentially in space, whose decay rate is dependent on the angle
between k and B0. This expression comes in handy when the "direction" is well-defined, i.e. k can be
written as some quantity 𝑘 (whether real or complex) times some real unit vector. However, this means
the derived relation is most interpretable when the decaying and the oscillatory behaviour is uniform in
all directions. In other words, the spatial part of the exponent would take the form (I take Lundquist
number 𝑆𝜔 → +∞ and the wave vector in 𝑂𝑥𝑧 plane just to simplify the expression)

exp
{
∓𝑉𝐴 cos 𝛾

√
𝜈𝜂

(sin 𝜃𝑥 + cos 𝜃𝑧)
}
= exp

{
∓

(
sin 𝜃

𝑥

𝛿BL
+ cos 𝜃

𝑧

𝛿BL

)}
which shows if the wave decays in 𝑧-direction (takes the minus sign and take 𝜃 ∈ (0, 𝜋/2)), it also
decays in the positive 𝑥-direction, and grows exponentially in the negative 𝑥-direction. Similarly, when
analyizing the electromagnetic wave in a conductive medium (see the first box in the next section), we
have the skin depth 𝛿𝑠, which gives the spatial dependency

exp
{
∓(𝑖 + 1)

√︂
𝜔

2𝜂
(sin 𝜃𝑥 + cos 𝜃𝑧)

}
= exp

{
∓(𝑖 + 1)

(
sin 𝜃

𝑥

𝛿𝑠
+ cos 𝜃

𝑧

𝛿𝑠

)}
.

Unless 𝜃 = 0 as in normal incidence (the case for Schaeffer, Jault, et al. 2012 and Schaeffer and Jault
2016), neither of these solutions would be valid for our plane wave analysis at some real 𝜃. The problem
is that in plane wave analysis, it is forbidden to have a solution that grows to infinity at 𝑥 = ∞ (infinity at
the boundary). Therefore we have to seek solution that is bounded at 𝑥 = ∞. A simple way out of this
is to state cos 𝜃 ∈ C. This works well for the electromagnetic wave in a conductive medium, but not so
much in the Alfvén wave case, for the latter contains an additional variable 𝛾 which is dependent on 𝜃.

In this section I shall formulate the solutions by postulating a fixed horizontal slowness, denoted as
𝑝 = 𝜔/𝑘𝑥 . This is a preserved quantity in any analysis of reflection and refraction of plane waves. For
the phases of different wave components to match at the interface, the equivalent condition is that all
wave components share the same horizontal (or interface-parallel) wavenumber. The plane waves now
have spatial dependency in the form

exp {𝑖(𝜔𝑝𝑥 + 𝑘𝑧𝑧)} .
The treatment as well as the dispersion relations developed in this section will be used for treating oblique
incidence cases.

3.1 Electromagnetic wave in conductive medium

We state the Helmholtz equation for electromagnetic wave in conductive medium

∇2B − 𝑖𝜔
𝜂

B = ∇2B − 𝑖𝜔𝜇0𝜎B = 0.

Postulating the solution of the form

B = B1 exp
{
𝑖𝜔

(
𝑡 − 𝑝𝑥 − 𝑘𝑧

𝜔
𝑧

)}
(𝑝 ∈ R),

we arrive at the dispersion relation for 𝑘𝑧

𝑘2
𝑧 = −𝜔2𝑝2 − 𝑖 𝜔

𝜂
= −𝜔2𝑝2 − 𝑖𝜔𝜇0𝜎. (58)

The solution from the dispersion relation is

𝑘𝑧 = ±
(
−𝜔2𝑝2 +

√︁
𝜔4𝑝4 + 𝜔2/𝜂2

2

) 1
2

∓ 𝑖
(
𝜔2𝑝2 +

√︁
𝜔4𝑝4 + 𝜔2/𝜂2

2

) 1
2

. (59)
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It is not immediately clear which term is more significant. In the context of Alfvén waves, the horizontal
slowness may be given by 𝑝 = sin 𝜃/𝑉𝐴 cos 𝛾 ∼ 1/𝑉𝐴 (when |𝜃 − 𝑛𝜋 | > 𝜖 and |𝛾 − (𝑛 + 1/2)𝜋 | > 𝜖). We
can take the ratio between 𝜔/𝜂 and 𝜔2𝑝2, and write

𝜔/𝜂
𝜔2𝑝2 =

2/𝛿2
𝑠

𝑘2
𝑥

= 2
𝜆̄2
𝑥

𝛿2
𝑠

,
𝜔/𝜂
𝜔2𝑝2 =

1
𝜔𝜂𝑝2 =

𝑉2
𝐴

𝜔𝜂
=
𝜎𝐵2

0
𝜔𝜌

which is the "Lundquist" number with only magnetic diffusion, and the magnetic diffusivity in the
conductive wall is used instead of diffusivity in the fluid. If we take𝜔 ∼ 2𝜋/(6×𝜋×107)s−1 ≈ 3×10−8s−1

(on the ground of the LOD variation, etc.), 𝜌 ∼ 104kg/m3 (rough value well constrained based on gravity,
seismology, mineralogy, etc.), and magnetic field ∼ 10−3T (arguable?), then this quantity is

𝜔/𝜂
𝜔2𝑝2 ∼ 𝜎

300S/m
.

While for the core where 𝜎 ∼ 2× 105S, the Lundquist number is justifiably large, at the order of 103, for
the lower mantle, if one uses 𝜎 ≈ 101 − 103S, the quantity is

𝜔/𝜂
𝜔2𝑝2 ≈ 0.03 − 3

which is within 0 to 1 order of magnitude around unity. Therefore, it is really unclear which one is the
smaller one, and how to expand the square roots into Taylor series. That being said, I shall still try to
simplify the equations in two endmember cases. First, for highly conductive medium or small horizontal
wavenumber (large horizontal wavelength) with 𝜔/𝜂 ≫ 𝜔2𝑝2, we have

𝑘𝑧 ≈ ±
√︂
𝜔

2𝜂

[(
1 − 1

2
𝜔𝜂𝑝2

)
− 𝑖

(
1 + 1

2
𝜔𝜂𝑝2

)]
, (60)

which reduces to the simple form of 𝑘𝑤 = ±(1 − 𝑖)/𝛿𝑠 at normal incidence or 𝑝 = 0. As the horizontal
wavenumber in the 𝑥 direction grows from 0 to a small value, the decay rate mildly grows in the 𝑧
direction, while the spatial oscillation rate mildly drops. For the other endmember, highly resistive
medium or large horizontal wavenumber (small horizontal wavelength), the 𝑧 wavenumber is simplified
into

𝑘𝑧 ≈ ±𝜔𝑝
[

1
2𝜔2𝜂2𝑝4 − 𝑖

(
1 + 1

8𝜔2𝜂2𝑝4

)]
. (61)

The wave solution then decays in the 𝑧-direction at the same length scale as the horizontal wavelength,
while the oscillation in the 𝑧-direction has much larger wavelength. As conductivity decreases, the
wavelength of oscillation increases, until in the resistive limit this goes to infinity, degenerating into the
evanescent solution of the Laplace equation.

3.2 Electromagnetic wave in insulator

We state the wave equation for electromagnetic wave in the insulating medium

∇2B − 1
𝑐2
𝜕2B
𝜕𝑡2

= 0 (62)

which is obtained by keeping the displacement current in the Ampere’s law. If the temporal variation
is very small, in other words, if the wavelength of the electromagnetic wave ∼ 𝑐/𝜔 is much larger than
the characteristic length scale of magnetic field variation, then the system is "quasi-static", and the field
fulfills the Laplace equation ∇2B = 0. Equivalently, the magnetic field can be expressed through a scalar
potential B = −∇𝑉 , and the scalar potential fulfills the scalar Laplace equation. The implicit assumption
would be that the propagation of waves is so fast, that the variation of the field is propagated almost
instantaneously (compared to the variation time at the boundary) across the characteristic length scales.
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Therefore, despite its simplicity, the Laplace equation cannot resolve the propagation of EM waves, and
will be problematic when one analyzes the energy flux in the system. Using the same wave ansatz, we
have from the wave equation

𝑘2
𝑧 + 𝑘2

𝑥 =
𝜔2

𝑐2 =⇒ 𝑘𝑧 = ±𝜔
√︂

1
𝑐2 − 𝑝2. (63)

For very small 𝑝 < 1/𝑐, we still have 𝑘𝑧 ∈ R. However, as soon as 𝑝 > 1/𝑐, the wave becomes evanescent
in the 𝑧 direction. To develop a feeling for this threshold, we take 𝑐 = 3 × 108m · s−1. If the frequency
is approximately 1Hz, the critical horizontal wavelength is 𝜆𝑐 ≈ 3 × 108m. Any horizontal wavelength
smaller than this would give rise to an evanescent electromagnetic wave. Threshold on the horizontal
wavelength for lower frequencies would be even larger. In terms of incidence angle of the Alfvén waves,
if we take𝑉𝐴 ∼ 0.1m · s−1, any 𝜃 >∼ 10−9rad would give rise to evanescent waves. It is fairly reasonable
to say that, in the parameter space that remotely resembles the Earth’s core, only Alfvén waves that are
almost normal incidence can excite travelling electromagnetic waves

B exp

{
𝑖𝜔

(
𝑡 − 𝑝𝑥 −

√︂
1
𝑐2 − 𝑝2𝑧

)}
, (64)

otherwise the matching electromagnetic wave is just an evanescent wave

B exp

{
𝑖𝜔(𝑡 − 𝑝𝑥) − 𝜔

√︂
𝑝2 − 1

𝑐2 𝑧

}
. (65)

When 𝑝 ≫ 1/𝑐, the length scale over which the wave decays is the same as the horizontal wavelength.

3.3 Alfvén wave and Hartmann layer solution

We recall the coupled equation for Alfvén wave in diffusive medium

𝜕u
𝜕𝑡

=
B0 · ∇
𝜌𝜇0

b + 𝜈∇2u,

𝜕b
𝜕𝑡

= B0 · ∇u + 𝜂∇2b.

Postulating the solution of the form

u = u0 exp
{
𝑖𝜔

(
𝑡 − 𝑝𝑥 − 𝑘𝑧

𝜔
𝑧

)}
, b = b0 exp

{
𝑖𝜔

(
𝑡 − 𝑝𝑥 − 𝑘𝑧

𝜔
𝑧

)}
(𝑝 ∈ R),

we arrive at the equations in frequency-wavenumber domain

(𝑖𝜔 + 𝜈(𝑘2
𝑧 + 𝜔2𝑝2))u + 𝑖 𝐵𝑥𝜔𝑝 + 𝐵𝑧𝑘𝑧

𝜌𝜇0
b = 0

𝑖(𝐵𝑥𝜔𝑝 + 𝐵𝑧𝑘𝑧)u + (𝑖𝜔 + 𝜂(𝑘2
𝑧 + 𝜔2𝑝2))b = 0

which yields the dispersion relation

−𝜔2 + 𝑖𝜔(𝜈 + 𝜂)
(
𝜔2𝑝2 + 𝑘2

𝑧

)
+ 𝜈𝜂

(
𝜔2𝑝2 + 𝑘2

𝑧

)2
+ 1
𝜌𝜇0

(𝐵𝑥𝜔𝑝 + 𝐵𝑧𝑘𝑧)2 = 0. (66)

We see the resemblance with eq.(13), except here k is replaced with 𝜔𝑝x̂ + 𝑘𝑧 ẑ, and so 𝑘2 is replaced
with 𝜔2𝑝2 + 𝑘2

𝑧 . We also see once again that the sole element that breaks the isotropy is the background
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field B0. However, different from eq.(13) which yields the biquadratic form of 𝑘 , this dispersion relation
is fully quartic, or of degree four, in 𝑘𝑧:

𝜈𝜂𝑘4
𝑧 +

(
2𝜈𝜂𝜔2𝑝2 + 𝑖𝜔(𝜈 + 𝜂) +

𝐵2
𝑧

𝜌𝜇0

)
𝑘2
𝑧 +

2𝐵𝑥𝐵𝑧
𝜌𝜇0

𝜔𝑝𝑘𝑧

+
(
−𝜔2 + 𝜈𝜂𝜔4𝑝4 + 𝑖(𝜈 + 𝜂)𝜔3𝑝2 + 𝐵2

𝑥

𝜌𝜇0
𝜔2𝑝2

)
= 0(

𝑘𝑧

𝜔𝑝

)4
+

(
2 + 𝑖 𝜈 + 𝜂

𝜈

1
𝜔𝜂𝑝2 +

𝐵2
𝑧

𝜌𝜇0𝜔𝜂

1
𝜔𝜈𝑝2

) (
𝑘𝑧

𝜔𝑝

)2
+ 2

𝐵𝑥𝐵𝑧

𝜌𝜇0𝜔𝜂

1
𝜔𝜈𝑝2

(
𝑘𝑧

𝜔𝑝

)
+

(
− 1
𝜔2𝑝4𝜈𝜂

+ 1 + 𝑖 𝜈 + 𝜂
𝜈

1
𝜔𝜂𝑝2 + 𝐵2

𝑥

𝜌𝜇0𝜔𝜂

1
𝜔𝜈𝑝2

)
= 0

(67)

We see that somehow 1/𝜔𝜂𝑝2 is popping up frequently in the equation. This quantity is no other than
2𝜆̄2
𝑥/𝛿2

𝑠 , or 𝑉2
𝐴

𝜔𝜂

cos 𝛾
sin 𝜃 , as previously shown. Therefore this quantity indicates the relative length scale

of 𝑥-wavelength compared to the skin depth inside the fluid medium, and can be defined as another
Lundquist number, denoted by 𝑆𝑝. Nondimensionalizing the equation with the quantities,

𝑘̃𝑧 =
𝑘𝑧

𝜔𝑝
, 𝑆𝜂 =

𝑉2
𝐴

𝜔𝜂
, 𝑆𝑝 =

1
𝜔𝜂𝑝2 , Pm =

𝜈

𝜂

we come to the dimensionless form of the equation

𝑘̃4
𝑧 +

(
2 + 𝑖1 + Pm

Pm
𝑆𝑝 +

𝑆𝜂𝑆𝑝

Pm
sin2 𝛼

)
𝑘̃2
𝑧 +

𝑆𝜂𝑆𝑝

Pm
sin 2𝛼𝑘̃𝑧

+
(
1 −

𝑆2
𝑝

Pm
+ 𝑖1 + Pm

Pm
𝑆𝑝 +

𝑆𝜂𝑆𝑝

Pm
cos2 𝛼

)
= 0

(68)

where 𝛼 is the azimuthal angle of B0 within the 𝑂𝑥𝑦 plane.
Alternatively, the 𝑧-wavenumber can also be nondimensionalized with the characteristic wavelength

of Alfvén wave, i.e.
𝑘̃𝑧 =

𝑘𝑧

𝑘𝐴
= 𝑘𝑧𝜆̄𝐴 =

𝑘𝑧𝑉𝐴

𝜔
= 𝑘𝑧

𝐵0

𝜔
√
𝜌𝜇0

.

Down this route, the dispersion relation is nondimensionalized as follows(
𝑘𝑧

𝑘𝐴

)4
+

(
2𝑉2

𝐴𝑝
2 + 𝑖 𝜈 + 𝜂

𝜈

𝑉2
𝐴

𝜔𝜂
+

𝑉4
𝐴

𝜔2𝜈𝜂
sin2 𝛼

) (
𝑘𝑧

𝑘𝐴

)2
+

𝑉4
𝐴

𝜔2𝜈𝜂
𝑝𝑉𝐴 sin 2𝛼

(
𝑘𝑧

𝑘𝐴

)
+

(
𝑉4
𝐴𝑝

4 + 𝑖 𝜈 + 𝜂
𝜈

𝑉2
𝐴

𝜔𝜂
𝑉2
𝐴𝑝

2 +
𝑉4
𝐴

𝜔2𝜈𝜂
𝑉2
𝐴𝑝

2 cos2 𝛼 −
𝑉4
𝐴

𝜔2𝜈𝜂

)
= 0

(69)

Expressing again the dimensionless groups in terms of Lundquist number for magnetic diffusion (𝑆𝜂 =

𝑉2
𝐴
/𝜔𝜂), magnetic Prandtl number (Pm = 𝜈/𝜂), and 𝑝 = 𝑝𝑉𝐴 (for travelling waves this is simply the ratio

between two angle cosines, which is at order 1 for most configurations, see the box below), we arrive at
the nondimensional equation

𝑘̃4
𝑧 +

(
2𝑝2 + 𝑖1 + Pm

Pm
𝑆𝜂 +

𝑆2
𝜂

Pm
sin2 𝛼

)
𝑘̃2
𝑧 +

𝑆2
𝜂

Pm
𝑝 sin 2𝛼𝑘̃𝑧

+
(
𝑝4 + 𝑖1 + Pm

Pm
𝑆𝜂 𝑝

2 +
𝑆2
𝜂

Pm
𝑝2 cos2 𝛼 −

𝑆2
𝜂

Pm

)
= 0

(70)
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The horizontal slowness in travelling Alfvén wave

Here I present a very concise discussion on the magnitude of horizontal slowness in travelling Alfvén waves. The
derivations in the following sections will be more elaborate, but not catered to this parameterization. I consider the
scenario where background field is coplanar with the plane of incidence (the out-of-plane component actually does not
matter), both in the 𝑂𝑥𝑧-plane, and the Alfvén wave takes the form

b = b0 exp {𝑖𝜔 (𝑡 − 𝑝𝑥 − 𝑞𝑧)}

Since the Alfvén wave is travelling, I shall take 𝑝, 𝑞 ∈ R. The wave propagates in the (sin 𝜃, 0, cos 𝜃) direction, and the
background field is in the direction (cos𝛼, 0, sin𝛼). The dispersion relation gives (approximately, ignoring the finite
Lundquist number term)

𝜔𝑝
𝐵𝑥

|B0 |
+ 𝜔𝑞 𝐵𝑧|B0 |

= ± 𝜔

𝑉𝐴
=⇒ 𝑝𝑉𝐴 cos𝛼 + 𝑞𝑉𝐴 sin𝛼 = ±1

Since the angle 𝜃 gives the angle between the wave vector and the 𝑧 axis, it can be seen that 𝑞/𝑝 = 𝑘𝑧/𝑘𝑥 = cot 𝜃.
Plugging it into the expression, we have the expression for 𝑝𝑉𝐴

𝑝𝑉𝐴 = ± 1
cot 𝜃 sin𝛼 + cos𝛼

= ± sin 𝜃
cos 𝜃 sin𝛼 + sin 𝜃 cos𝛼

= ± k̂ · x̂
k̂ · B̂0

. (71)

For most configurations with wave vector not too close to ẑ and not too close to normal of B̂0 (in which case there is
scarcely any propagation anyway (group velocity very small)), the quantity is close to unity. It can be also seen in fig.(3),
that the scenario where 𝑝 is one order of magnitude away from unity (especially 𝑝 > 10) occupies a very small domain
in the parameter space.

Figure 3: Dimensionless horizontal slowness 𝑝 as a function of B0 − x̂ angle 𝛼 and incidence angle 𝜃.

I shall use expression eq.(70) in favour of eq.(68), since eq.(68) introduces artificially a singularity
at 𝑝 → 0, i.e. normal incidence. At this limit it is no longer legimate to normalize the 𝑧-wavenumber
with the 𝑥-wavenumber since the latter is trivial. On the other hand, eq.(70) degenerates to the dispersion
relation eq.(13), at normal incidence 𝑝 = 0 (note in this case sin𝛼 = cos 𝛾).

Although general solution to any quartic equation exists, and so the roots of the dispersion relation
can, in principle, be expressed analytically, the formulae would be somewhat lengthy and offers virtually
no additional insights. I shall investigate the solution in two ways. First, I shall take a pertubative
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approach and look at the asymptotic behaviour of the solution at high Lundquist number, expressing the
solution as a series in inverse Lundquist number. Second, I shall calculate numerically the solution to
the dispersion relation, and see how the solved 𝑘𝑧 compares with the first-order expansion.

3.4 Spatial branch of MHD waves at high Lundquist number

3.4.1 Perturbative solution to first order

While solving analytically eq.(70) yields very lengthy solution, prohibiting meaningful interpretation of
the result, it is however feasible to characterize the spatial branch solution at high Lundquist number.
More specifically, we wish to expand the solution to leading orders of inverse Lundquist number. This
motivates a pertubative approach to solving the equation. We know a priori that the solution to eq.(70)
should comprise of both travelling Alfvén waves and Hartmann boundary layers. To begin the derivation,
let us first examine the simplified systems that renders these endmember solutions. The travelling Alfvén
wave dispersion relation can be obtained once we take the ideal limit, where 𝑆𝜂 → +∞. With finite 𝑘̃𝑧 ,
the equation can be simplified by taking all the terms that contain 𝑆2

𝜂:

𝑆2
𝜂

Pm
[
sin2 𝛼𝑘̃2

𝑧 + 2𝑝 sin𝛼 cos𝛼𝑘̃𝑧 + 𝑝2 cos2 𝛼 − 1
]
= 0(

sin𝛼𝑘̃𝑧 + 𝑝 cos𝛼
)2

= 1 =⇒ 𝑘̃1,2 =
±1 − 𝑝 cos𝛼

sin𝛼

(72)

which yields the diffusionless travelling Alfvén wave solution. This can be perceived as a zeroth order
solution in 𝑆−1

𝜂 . On the other hand, the Hartmann boundary layer cannot be obtained in this manner, as
this solution scales with 𝑆2

𝜂 , and goes to infinity together with 𝑆𝜂 at high Lundquist number limit. We
must then take the scaling 𝑘̃𝑧 ∼ 𝑆2

𝜂 , and keep the leading order term in 𝑆𝜂 in eq.(70), which gives

𝑘̃4
𝑧 +

𝑆2
𝜂

Pm
sin2 𝛼𝑘̃𝑧 = 𝑘̃

2
𝑧

(
𝑘̃2
𝑧 +

𝑆2
𝜂

Pm
sin2 𝛼

)
= 0 =⇒ 𝑘̃3,4 = ±𝑖

𝑆𝜂√
Pm

sin𝛼 (73)

the Hartmann layer solution. The trivial solutions are already neglected (formally these correspond to the
travelling Alfvén waves, but they are negligible in 𝑘̃𝑧 magnitude compared to the Hartmann layer, hence
trivial). This should also be perceived as a zeroth order solution. The two simplification approaches lead
to two unperturbed equations, whose solutions can be easily derived and correspond to Alfvén wave and
Hartmann layer, respectively. The question now is, how will the additional terms that are neglected in
these simplifications modify the solution 𝑘̃𝑧? To this end, a pertubative approach can be employed. The
machinery to be used is documented in Appendix C.

To employ this machinery, we consider the original equation split into an unperturbed form and
perturbation terms. For the travelling Alfvén wave, the unperturbed and perturbation polynomials are
given by

𝑝0( 𝑘̃𝑧) =
𝑆2
𝜂

Pm

[ (
𝑘̃𝑧 sin𝛼 + 𝑝 cos𝛼

)2 − 1
]

𝛿𝑝( 𝑘̃𝑧) = 𝑘̃4
𝑧 +

(
𝑖𝑆𝜂

1 + Pm
Pm

+ 2𝑝2
)
𝑘̃2
𝑧 +

(
𝑖𝑆𝜂

1 + Pm
Pm

+ 𝑝2
)
𝑝2

(74)

and the unperturbed solutions are given by eq.(72). According to Appendix C, the leading order correction
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to the roots are given by

𝛿𝑘̃1,2 = −
𝛿𝑝( 𝑘̃1,2)
𝑝′0( 𝑘̃1,2)

= ∓ Pm
2𝑆2

𝜂 sin𝛼

[(
±1 − 𝑝 cos𝛼

sin𝛼

)4
+

(
𝑖𝑆𝜂

1 + Pm
Pm

+ 2𝑝2
) (

±1 − 𝑝 cos𝛼
sin𝛼

)2
+

(
𝑖𝑆𝜂

1 + Pm
Pm

+ 𝑝2
)
𝑝2

]
≈ ∓𝑖 1 + Pm

2𝑆𝜂 sin𝛼

[(
±1 − 𝑝 cos𝛼

sin𝛼

)2
+ 𝑝2

]
= ∓𝑖 1 + Pm

2𝑆𝜂 sin𝛼
1 ∓ 2𝑝 cos𝛼 + 𝑝2

sin2 𝛼
.

(75)
Note in the last line, only terms in the leading order of 𝑆𝜂 are kept. It follows that the travelling Alfvén
wave with first order correction is

𝑘̃ ′1,2 =
±1 − 𝑝 cos𝛼

sin𝛼
∓ 𝑖 1 + Pm

2𝑆𝜂 sin3 𝛼

(
1 ∓ 2𝑝 cos𝛼 + 𝑝2

)
+𝑂

(
𝑆−2
𝜂

)
=
±1 − 𝑝 cos𝛼

sin𝛼

[
1 − 𝑖 1 + Pm

2𝑆𝜂 sin2 𝛼

1 ∓ 2𝑝 cos𝛼 + 𝑝2

1 ∓ 𝑝 cos𝛼
+𝑂

(
𝑆−2
𝜂

)]
.

(76)

Similarly, the original equation can be split into an unperturbed form that yields the Hartmann layer
solution, and the perturbation terms:

𝑝0( 𝑘̃𝑧) = 𝑘̃4
𝑧 +

𝑆2
𝜂

Pm
sin2 𝛼𝑘̃2

𝑧 ,

𝛿𝑝( 𝑘̃𝑧) =
(
𝑖𝑆𝜂

1 + Pm
Pm

+ 2𝑝2
)
𝑘̃2
𝑧 +

𝑆2
𝜂

Pm
𝑝 sin 2𝛼𝑘̃𝑧 +

(
𝑆2
𝜂

Pm

(
𝑝2 cos2 𝛼 − 1

)
+

(
𝑖𝑆𝜂

1 + Pm
Pm

+ 𝑝2
)
𝑝2

)
(77)

and the unperturbed solutions are given by eq.(73). The leading order correction to the roots are

𝛿𝑘̃3,4 = −
𝛿𝑝( 𝑘̃3,4)
𝑝′0( 𝑘̃3,4)

= −1
2

(
±𝑖

𝑆𝜂√
Pm

sin𝛼
)−3

𝛿𝑝( 𝑘̃3,4)

≈ ± Pm
3
2

𝑖2𝑆3
𝜂 sin3 𝛼

[
−𝑖𝑆𝜂

1 + Pm
Pm

𝑆2
𝜂

Pm
sin2 𝛼 ± 𝑖

𝑆3
𝜂

Pm
3
2

2𝑝 sin2 𝛼 cos𝛼

]
= ± 1

2 sin𝛼

[
−1 + Pm

√
Pm

± 2𝑝 cos𝛼
]
.

(78)

Similarly, only the terms in the leading order of 𝑆𝜂 are kept. The corrected Hartmann layer solution is

𝑘̃ ′3,4 = ±𝑖
𝑆𝜂√
Pm

sin𝛼 ± 1
2 sin𝛼

(
−1 + Pm

√
Pm

± 2𝑝 cos𝛼
)
+𝑂

(
𝑆−1
𝜂

)
= ±𝑖

𝑆𝜂√
Pm

sin𝛼

[
1 + 𝑖1 + Pm ∓ 2𝑝

√
Pm cos𝛼

2𝑆𝜂 sin2 𝛼
+𝑂

(
𝑆−2
𝜂

)]
.

(79)

As a quick verification, we can plut in 𝑝 = 0, corresponding to normal incidence. Restoring the
wavenumbers to their dimensional form, we have

𝑘1,2 = ± 𝜔

𝑉𝐴 sin𝛼

[
1 − 𝑖 1 + Pm

2𝑆𝜂 sin2 𝛼
+𝑂

(
𝑆−2
𝜂

)]
= ± 𝜔

𝑉𝐴 sin𝛼

[
1 − 𝑖 𝜔(𝜈 + 𝜂)

2𝑉2
𝐴

sin2 𝛼
+𝑂

(
𝑆−2
𝜂

)]
𝑘3,4 = ±𝑖𝑉𝐴 sin𝛼

√
𝜈𝜂

[
1 + 𝑖 1 + Pm

2𝑆𝜂 sin2 𝛼
+𝑂

(
𝑆−2
𝜂

)]
= ±𝑖𝑉𝐴 sin𝛼

√
𝜈𝜂

[
1 + 𝑖 𝜔(𝜈 + 𝜂)

2𝑉2
𝐴

sin2 𝛼
+𝑂

(
𝑆−2
𝜂

)]
exactly the same as the expressions in the first section.
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3.4.2 Comparison with numerical solutions

To further verify the result, I include here a comparison between the first order approximation with the
numerical solution to eq.(70). In first example, I fix the Lundquist number at 𝑆𝜂 = 103, and magnetic
Prandtl number at Pm = 10−3; the angle between B0 and x̂ is fixed at 𝛼 = 60◦. The dimensionless
horizontal wavenumber 𝑝 varies from 0.1 to ≈ 30. The results are shown in figs.(4) and (5). The first-
order approximation works amazingly well, except for a tiny part at relatively high 𝑝 for the damping rate
of the travelling Alfvén wave. Such behaviour is possible as 𝑝2 ∼ 𝑆𝜂 at 𝑝 ∼ 30, potentially elevating the
higher-order terms to the same level as the first-order correction.

10 1 100 101

Normalized x wavenumber  p = pVA = kx
kA

= kx
/VA

20

15

10

5

0

No
rm

al
ize

d 
z w

av
en

um
be

r 
 R

e[
k z

]=
Re

[k z k A
]=

Re
[

k z /V
A
]

Travelling wave (+)
Travelling wave ( )
1st-order approx (+).
1st-order approx ( ).

10 1 100 101

Normalized x wavenumber  p = pVA = kx
kA

= kx
/VA

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Im
[k

z]
=

Im
[k z k A

]=
Im

[
k z /V

A
] Travelling wave (+)

Travelling wave ( )
1st-order approx (+).
1st-order approx ( ).

Figure 4: 𝑘̃𝑧 for travelling Alfvén waves as a function of 𝑝, first-order approximation (eq.76) (crossed
lines) validated against numerical solutions to eq.(70) (circles).
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Figure 5: 𝑘̃𝑧 for Hartmann boundary layers as a function of 𝑝, first-order approximation (eq.79) (crossed
lines) validated against numerical solutions to eq.(70) (circles).

In the second example, I change the Lundquist number 𝑆𝜂 from 1 to 105. The rest of the parameters
are fixed at Pm = 1, 𝑝 = 1 and 𝛼 = 60◦. The results are shown in figs. (6) and (7). Significant
discrepancy begins to emerge at 𝑆𝜂 ∼ 1, but the first-order approximation seems to work well whenever
𝑆𝜂 > 30. I therefore conclude that the first-order approximation developed using pertubative approach is
accurate for a wide range of configurations, and can be used in place of numerical solutions for developing
analytical reflection and transmission formulae.
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Figure 6: 𝑘̃𝑧 for travelling Alfvén waves as a function of 𝑆𝜂 , first-order approximation (eq.76) (crossed
lines) validated against numerical solutions to eq.(70) (circles).
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Figure 7: 𝑘̃𝑧 for Hartmann boundary layers as a function of 𝑆𝜂 , first-order approximation (eq.79) (crossed
lines) validated against numerical solutions to eq.(70) (circles).
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4 3-D Reflection at solid boundary

In this section, I shall collect the derivations from previous sections and show how the problem of 3-D
reflection and transmission of Alfvén waves can be solved with different levels of approximations.

I shall start by identifying the boundary conditions that need to be satisfied at the fluid-solid interface.
As an Alfvén wave impinges on the boundary, the fields at the boundary have the tendency to oscillate
together with the incoming wave. These tendencies of oscillation then excite several waves of different
nature, that take the energy away from the boundary.

Depending on the specific approximations / assumptions, different waves might not be of equal
importance in the system, and might not even be excited in the first place. In the end, the necessary
continuity conditions in combination with the relevant waves should form a nonsingular linear system,
whose solution gives the reflection and transmission relations.

The general setup is as follows. We look at the scenario where the fluid-solid boundary is at 𝑧 = 0,
extending to infinity in the 𝑥 and 𝑦 direction. Fluid occupies the 𝑧 < 0 half space, and a solid phase
occupies 𝑧 > 0. The fluid is electrically conducting, with finite conductivity. The solid is assumed to
be diffusionless with isotropic linear elasticity, at least in the frequency band of interest. The velocities,
whether in the fluid or in the solid, are always sufficiently small, that the low-speed limit of either the
Galilean transform or the Lorentz transform is satisfactory.

4.1 Identifying the continuity conditions, the fields, and wave components

4.1.1 Continuity conditions at the boundary

First, we look at kinematic boundary conditions. We assume that the two media retain their respective
continuum, and have no mixing nor cavity in between. Thus, the non-penetration boundary condition
requires

[[n̂ · u]] = n̂ · [[u]] = [[𝑢𝑧]] = 0. (80)

If the fluid is diffusive, the no-relative-slip boundary condition also needs to be satisfied:

[[n̂ × u]] = û × [[u]] = 0, [[𝑢𝑥]] = [[𝑢𝑦]] = 0. (81)

When both assumptions are made (as is the case in this section), then the total effect is to impose
continuity of the velocity field across the boundary, comprising three scalar equations (𝑢𝑥 , 𝑢𝑦 , 𝑢𝑧).

We next look at the dynamic boundary conditions. Discontinuities in stress would give rise to
infinitely large accelerations, which should be excluded from the system. Therefore, the traction should
be continuous across the boundary,

[[t]] = [[n̂ · 𝝉]] = 0 (82)

where 𝝉 is the stress tensor. This comprises another three scalar equations (𝜏𝑧𝑧 , 𝜏𝑧𝑥 , 𝜏𝑧𝑦).
The aforementioned six boundary conditions are also present in the analysis of elastic waves or

acoustic waves. However, the electrically conducting fluid requires additional electromagnetic boundary
conditions. As a collorary of Gauss’s law for magnetism, the boundary-normal component of the
magnetic field must be continuous, giving

[[n̂ · B]] = n̂ · [[B]] = [[𝐵𝑧]] = 0. (83)

The continuity of the boundary-parallel magnetic field is generally not true in some ideal cases, but
remains true when void of sheet currents

[[n̂ × B]] = n̂ × [[B]] = 0, [[𝐵𝑥]] = [[𝐵𝑦]] = 0. (84)

This is discussed and justified in, e.g. Olson et al. (2015), where Paul Roberts postulated that a
thin current sheet should diffuse into currents with finite amplitudes within a finite thickness in the
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imperfectly conducting fluid (as is the case in this section). Therefore there are another three scalar
equation concerning 𝐵𝑥 , 𝐵𝑦 , 𝐵𝑧 .

Although quite often not imposed, the boundary-parallel electric field is required by Faraday’s law
given finite magnetic field,

[[n̂ × E]] = n̂ × [[E]] = 0, [[𝐸𝑥]] = [[𝐸𝑦]] = 0. (85)

If one constructs closed curves whose enclosed surface is parallel to the interface, it can be shown that
due to Faraday’s law ∮

𝜕Σ

E · 𝑑l = −
∫
Σ

𝜕B
𝜕𝑡

· 𝑑S,

the two continuities on 𝐸𝑥 and 𝐸𝑦 and the continuity on 𝐵𝑧 are linearly dependent. One can choose
either two of the three conditions. Here I shall use the continuity of the boundary-normal magnetic field,
plus continuity of one component of the boundary-parallel electric field. The continuity of electric field
therefore gives only one additional scalar boundary condition.

To sum up, we have the continuity conditions on the following ten fields

𝑢𝑥 , 𝑢𝑦 , 𝑢𝑧 , 𝜏𝑧𝑥 , 𝜏𝑧𝑦 , 𝜏𝑧𝑧 , 𝑏𝑥 , 𝑏𝑦 , 𝑏𝑧 , 𝑒𝑥 (𝑒𝑦).

4.1.2 Coupling of waves with Alfvén waves

Without loss of generality, we look at the problem where the incoming wave is in the 𝑂𝑥𝑧 plane. Due
to the matching of phase at the boundary, all reflected and transmitted waves should share the same
horizontal wavenumber, and hence should be coplanar with the incidence wave. Therefore, 𝑂𝑥𝑧 is not
only the plane of incidence, but the plane where all wave vectors fall in. The matching of azimuth that
Ferraro (1954) comes up with is then a trivial collorary using this parameterization.

Not all Alfvén waves excite all fields at the boundary. For instance, if the incoming wave is polarized
purely in the horizontal direction (i.e. in ŷ), then the fields 𝑢𝑧 , 𝑢𝑥 , 𝑏𝑧 and 𝑏𝑥 are all zero in the interior.
Without these oscillations, 𝜎𝑧𝑧 , 𝜎𝑧𝑥 , 𝑒𝑦 are all zero. It follows that when such waves hit the fluid-solid
interface, the interface also does not "see" or "feel" any variations in 𝑢𝑧 , 𝑢𝑥 , 𝑏𝑧 , 𝑏𝑥 , 𝑒𝑥 , 𝜎𝑧𝑧 or 𝜎𝑧𝑥 .
The electromagnetic, elastic, or hydromagnetic waves associated with these fields only will also not be
excited.

Table 1: Waves and their relevant fields

Mode Notation Kinematic Dynamic Magnetic Electric

Alfvén horizontal AH 𝑢𝑦 𝜎𝑧𝑦 𝑏𝑦 𝑒𝑥 , (𝑒𝑧)
Alfvén vertical AV 𝑢𝑥 , 𝑢𝑧 𝜎𝑧𝑥 , 𝜎𝑧𝑧 𝑏𝑥 , 𝑏𝑧 𝑒𝑦

Hartmann horizontal BLH 𝑢𝑦 𝜎𝑧𝑦 𝑏𝑦 𝑒𝑥 , (𝑒𝑧)
Hartmann vertical BLV 𝑢𝑥 , 𝑢𝑧 𝜎𝑧𝑥 , 𝜎𝑧𝑧 𝑏𝑥 , 𝑏𝑧 𝑒𝑦

S-wave horizontal SH 𝑢𝑦 𝜎𝑧𝑦 ∗ ∗
S-wave vertical SV 𝑢𝑥 , 𝑢𝑧 𝜎𝑧𝑥 , 𝜎𝑧𝑧
P/Acoustic P 𝑢𝑥 , 𝑢𝑧 𝜎𝑧𝑥 , 𝜎𝑧𝑧

Horizontal magnetic MH ∗ ∗ 𝑏𝑦 𝑒𝑥 , (𝑒𝑧)
Horizontal electric EH 𝑏𝑥 , 𝑏𝑧 𝑒𝑦

The physical fields associated with these waves are summarized in Table 1. The bracket around 𝑒𝑧 in-
dicates although this field is excited, there is usually no boundary condition imposed on it. Discontinuities
in 𝑒𝑧 is generally matched with a sheet of electric charge at the boundary.

Similar to the case with elastic waves, it seems good pratice to separate the Alfvén waves into
horizontally-polarized (AH) and vertically-polarized (AV) modes. These two modes excite two distinct,
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mutually-exclusive sets of fields, and assuming that the elastic/electromagnetic waves have no electro-
magnetic/mechanical effects, respectively, the two polarization of Alfvén waves also only couple with
selected elastic/electromagnetic waves. For instance, AH mode is coupled with SH, MH modes, while
AV is coupled with P, SV and EH modes.

An open question here is whether elastic/electromagnetic waves in the medium are purely mechan-
ical/electromagnetic, or also have electromagnetic/mechanical effects. This ambiguity is marked with
asteriks in the table. [While it seems plausible and intuitive that these waves may have marginal elec-
tromagnetic/mechanical effects, it remains uncertain what is the error made in this assumption (or what
is the dimensionless number that gives the amplitude (energy) partition ratio between velocity field
(kinematic energy) and electromagnetic field (electromagnetic energy)).] Here I shall assume that the
effect is marginal, and the asterik in the table indicates no such fields excited. I shall come back to this
assumption at the end of the section.

4.1.3 Two modes and related conditions

I have already shown that, assuming mechanical waves and electromagnetic waves are purely mechanical
and electromagnetic, respectively, AH and AV modes are only coupled with selected modes. In this part,
I shall list the coupled waves and their relevant boundary conditions.

First, we collect all waves that are involved in the fields 𝑢𝑦 , 𝜎𝑧𝑦 , 𝑏𝑦 and 𝑒𝑥 . Counting both incidental
and reflected Alfvén waves, we have altogether five components:

• (Incidence) horizontally-polarized Alfvén wave (AH-Incidence),

• (Reflected) horizontally-polarized Alfvén wave (AH-Reflected),

• Horizontally-polarized Hartmann boundary layer (BLH),

• (Transmitted) horizontally-polarized longitudinal wave (SH-Transmitted),

• (Transmitted) electromagnetic wave with horizontal magnetic field (MH-Transmitted).

The five components are linked via four continuity conditions:

[[𝑢𝑦]] = 0, [[𝜎𝑧𝑦]] = 0, [[𝑏𝑦]] = 0, [[𝑒𝑧]] = 0, (86)

which should yield four reflection/refraction coefficients.
The second scenario couples waves involving fields 𝑢𝑥 , 𝑢𝑧 ,𝜎𝑧𝑥 ,𝜎𝑧𝑥 , 𝑏𝑥 , 𝑏𝑧 . Counting both incidental

and reflected Alfvén waves, we have altogether seven components:

• (Incidence) vertically-polarized Alfvén wave (AV-Incidence),

• (Reflected) vertically-polarized Alfvén wave (AV-Reflected),

• Vertically-polarized Hartmann boundary layer (BLV),

• (Reflected) acoustic wave (P-Reflected),

• (Reflected) compressional wave (P-Transmitted)

• (Transmitted) vertically-polarized longitudinal wave (SV-Transmitted),

• (Transmitted) electromagnetic wave with horizontal electric field (EH-Transmitted).

The six continuity conditions involved are

[[𝑢𝑥]] = [[𝑢𝑧]] = 0, [[𝜎𝑧𝑦]] = [[𝜎𝑧𝑧]] = 0, [[𝑏𝑥]] = [[𝑏𝑧]] = 0, (87)

No additional condition is required for 𝑒𝑦 , as 𝑒𝑥 = 0, and continuity of 𝑏𝑧 would entail continuity of 𝑒𝑦 .
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4.2 Waves and associated fields

In this subsection, I shall summarize the plane wave solutions of different waves. Most of the content will
be reiteration of what has already been derived in previous sections, but I shall list the relation between
different fields involved in matrix notations.

The idea of these concise matrix-vector notations are inspired by Aki and Richards (2002). In
their treatment of seismic waves at medium interfaces, Aki and Richards (2002) used these notations to
match the boundary conditions, something I shall also do here. They also showed that by writing the
waves in a general form 𝑑

𝑑𝑧
f = Af, different modes/waves that are permitted in the system can be solved

as eigenvectors of A, with their respective vertical slowness as eigenvalues. This is another, perhaps
more systematic way to derive the dispersion relation for 𝑘𝑧 . Although methodologically elegant, for
anisotropic waves such as Alfvén waves, this approach proves to yield systems that are no simpler than
the original form. I walked halfway through this approach, but decided in the end I shall simply reuse
the results from previous sections.

4.2.1 The Alfvén waves

For the travelling Alfvén waves, I shall start from the previously derived zeroth-order approximate
dispersion relation. Assuming a horizontal slowness denoted by 𝑝, the plane wave ansatz takes the form

u exp {𝑖 (𝜔𝑡 − 𝑘𝑥𝑥 − 𝑘𝑧𝑧)} = u exp {𝑖 (𝜔𝑡 − 𝜔𝑝𝑥 − 𝑘𝑧𝑧)} .

The other three fields are related to the velocity field via

𝜕b
𝜕𝑡

= B0 · ∇u + 𝜂∇2b

𝝉 = 𝜌𝜈

(
∇u + ∇u𝑇

)
+ B0 · b

𝜇0
I

e = 𝜂∇ × b − u × B0

(88)

which can be rewritten in the frequency-wavenumber domain (using the plane wave ansatz)

b =
−𝑖𝐵𝑥𝑘𝑥 − 𝑖𝐵𝑧𝑘𝑧
𝑖𝜔 + 𝜂(𝑘2

𝑥 + 𝑘2
𝑧)

u = −√𝜌𝜇0𝑉𝐴
𝑘𝑥 cos𝛼 + 𝑘𝑧 sin𝛼
𝜔 − 𝑖𝜂(𝑘2

𝑥 + 𝑘2
𝑧)

u =
√
𝜌𝜇0𝐴𝑘u

𝝉 = 𝜌𝜈 [−𝑖𝑘𝑥 (x̂u + ux̂) − 𝑖𝑘𝑧 (ẑu + uẑ)] + 𝜌𝐴𝑘𝑉𝐴 [(cos𝛼x̂ + sin𝛼ẑ) · u] I
e = −𝜂(𝑖𝑘𝑥 x̂ + 𝑖𝑘𝑧 ẑ) × (√𝜌𝜇0𝐴𝑘u) + 𝐵0(cos𝛼x̂ + sin𝛼ẑ) × u
= −𝑖√𝜌𝜇0𝜂𝐴𝑘 (𝑘𝑥 x̂ + 𝑘𝑧 ẑ) × u + √

𝜌𝜇0𝑉𝐴(cos𝛼x̂ + sin𝛼ẑ) × u

(89)

where the dimensionless number 𝐴𝑘 gives the ratio between magnetic and velocity fields

𝐴𝑘 = −𝑉𝐴(𝑘𝑥 cos𝛼 + 𝑘𝑧 sin𝛼)
𝜔 − 𝑖𝜂(𝑘2

𝑥 + 𝑘2
𝑧)

. (90)

Note that the spatially varying magnetic pressure also contributes an isotropic component to the total
stress. This comes from the balance ∇(𝑝+ 𝑝𝑀 ) = 0. Observing that a constant factor of √𝜌𝜇0 is required
to bridge the gap between kinematic and electromagnetic fields, we redefine

b :=
b

√
𝜌𝜇0

, e :=
e

√
𝜌𝜇0

. (91)

Under these transforms, b has the a dimension of velocity, and [𝝉] = [𝜌] [e]. I shall use this redefinition
for the rest of this section. The relations between the fields are then rewritten as

b = 𝐴𝑘u
𝝉 = −𝑖𝜌𝜈 [𝑘𝑥 (x̂u + ux̂) + 𝑘𝑧 (ẑu + uẑ)] + 𝜌𝐴𝑘𝑉𝐴 [(cos𝛼x̂ + sin𝛼ẑ) · u] I
e = −𝑖𝜂𝐴𝑘 (𝑘𝑥 x̂ + 𝑘𝑧 ẑ) × u +𝑉𝐴(cos𝛼x̂ + sin𝛼ẑ) × u
= (−𝑖𝜂𝐴𝑘𝑘𝑥 +𝑉𝐴 cos𝛼)x̂ × u + (−𝑖𝜂𝐴𝑘𝑘𝑧 +𝑉𝐴 sin𝛼)ẑ × u.

(92)
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We have seen that the 𝑧-wavenumber for the travelling Alfvén wave is given by (eq.??)

𝑘𝑧 =
𝜔

𝑉𝐴

±1 − 𝑝𝑉𝐴 cos𝛼
sin𝛼

+𝑂 (𝜖𝜂).

Once again 𝜖𝜂 = 1/𝑆𝜂 = 𝜔𝜂/𝑉2
𝐴

is the inverse of the Lundquist number. This relation has a relative error
of 𝑂 (𝜖𝜂), meaning the error in 𝑘𝑧 is at the order of 𝜔

𝑉𝐴
𝜖𝜂 . It follows that

𝑉𝐴(𝑘𝑥 cos𝛼 + 𝑘𝑧 sin𝛼) = 𝜔𝑝𝑉𝐴 cos𝛼 + 𝑘𝑧𝑉𝐴 sin𝛼 = ±𝜔 +𝑂 (𝜖𝜂)

𝑘2
𝑥 + 𝑘2

𝑧 = 𝜔
2𝑝2 + 𝑘2

𝑧 =
𝜔2

𝑉2
𝐴

((
1 + 𝑝2𝑉2

𝐴

)
csc2 𝛼 ∓ 𝑝𝑉𝐴 csc𝛼 cot𝛼

)
+𝑂 (𝜖𝜂)

(93)

For moderate incidence angle, 𝑝𝑉𝐴 = 𝑝 <∼ 1 and sin𝛼 ∼ 1, the factor

𝐴𝑘 = −𝑉𝐴(𝑘𝑥 cos𝛼 + 𝑘𝑧 sin𝛼)
𝜔 − 𝑖𝜂(𝑘2

𝑥 + 𝑘2
𝑧)

= ∓
𝜔 +𝑂 (𝜖𝜂)

𝜔 − 𝑖 𝜔2𝜂

𝑉2
𝐴

(
(1 + 𝑝2) csc2 𝛼 ∓ 𝑝 csc𝛼 cot𝛼 +𝑂 (𝜖𝜂)

)
= ∓

1 +𝑂 (𝜖𝜂)
1 − 𝑖𝜖𝜂

(
(1 + 𝑝2) csc2 𝛼 ∓ 𝑝 csc𝛼 cot𝛼 +𝑂 (𝜖𝜂)

)
= ∓1 +𝑂 (𝜖𝜂).

(94)

Plugging this into the relation of fields, we have for the travelling Alfvén wave,

b = ∓
(
1 +𝑂 (𝜖𝜂)

)
u

𝝉 = −𝑖𝜌𝜈[𝑘𝑥 (x̂u + ux̂) + 𝑘𝑧 (ẑu + uẑ)] ∓ 𝜌𝑉𝐴(cos𝛼x̂ + sin𝛼ẑ) · uI

= −𝑖𝜌𝜔𝜈
𝑉𝐴

[
𝑝𝑉𝐴(x̂u + ux̂) + ±1 − 𝑝𝑉𝐴 cos𝛼

sin𝛼
(ẑu + uẑ)

]
∓ 𝜌𝑉𝐴(cos𝛼x̂ + sin𝛼ẑ) · uI

e =
(
±𝑖𝜂𝑘𝑥 (1 +𝑂 (𝜖𝜂)) +𝑉𝐴 cos𝛼

)
x̂ × u +

(
±𝑖𝜂𝑘𝑧 (1 +𝑂 (𝜖𝜂)) +𝑉𝐴 sin𝛼

)
ẑ × u

=

(
cos𝛼 ± 𝑖 𝜔𝜂

𝑉2
𝐴

𝑝𝑉𝐴(1 +𝑂 (𝜖𝜂))
)
𝑉𝐴x̂ × u +

(
sin𝛼 ± 𝑖 𝜔𝜂

𝑉2
𝐴

±1 − 𝑝𝑉𝐴 cos𝛼
sin𝛼

)
𝑉𝐴ẑ × u

=
(
cos𝛼 +𝑂 (𝜖𝜂)

)
𝑉𝐴x̂ × u +

(
sin𝛼 +𝑂 (𝜖𝜂)

)
𝑉𝐴ẑ × u.

(95)

In the original dispersion relation of 𝑘𝑧 , the positive and negative signs correspond to waves travelling in
the +𝑧 and −𝑧 directions, respectively. Therefore, in eq.(95), the upper and lower signs always correspond
to waves propagating in the +𝑧 and −𝑧 directions, respectively. We also observe that when sin𝛼 is of
order unity, the contribution of 𝜂∇×b in the electric field is of order 𝜖𝜂 compared to the motion-induced
field u × B0. The dominant component in electromagnetic fields as well as velocity fields are the same
as in the ideal limit.

We are now ready to derive the fields related to the two Alfvén wave modes. For the horizontally-
polarized Alfvén wave (AH), we can set up the field vector as

fAH =

©­­­«
𝑢𝑦
𝜏𝑧𝑦
𝑏𝑦
𝑒𝑥

ª®®®¬ =

©­­­­«
1

−𝑖 𝜌𝜔𝜈
𝑉𝐴

±1−𝑝𝑉𝐴 cos 𝛼
sin 𝛼

∓1
−𝑉𝐴 sin𝛼

ª®®®®¬
𝑢𝑦 (96)

In each of the fields, only terms up to the leading order of 𝜖𝜂 are collected. The elements in the vector
are collected from the corresponding components in eq.(95). For the vertically-polarized Alfvén wave,
the problem is more complicated. Not only are there six scalar field components involved, but the
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polarization is no longer along the principal axes. Using the rotation transform matrix is of course
possible, but even the velocity and magnetic fields would be quite complex in the 𝑂𝑥𝑦𝑧 components, let
alone the secondary fields. Instead, I define the stream function Ψ = 𝜓ŷ so that

u = ∇ × Ψ, 𝑢𝑥 = −𝜕𝜓
𝜕𝑧

= 𝑖𝑘𝑧𝜓, 𝑢𝑧 =
𝜕𝜓

𝜕𝑥
= −𝑖𝑘𝑥𝜓. (97)

The field vector for the vertically-polarized Alfvén wave (AV) is then given by

fAV =

©­­­­­­­«

𝑢𝑥
𝑢𝑧
𝜏𝑧𝑥
𝜏𝑧𝑧
𝑏𝑥
𝑏𝑧

ª®®®®®®®¬
=

©­­­­­­­«

𝑖𝑘𝑧
−𝑖𝑘𝑥

𝜌𝜈
(
𝑘2
𝑧 − 𝑘2

𝑥

)
−2𝜌𝜈𝑘𝑥𝑘𝑧 ∓ 𝑖𝜌𝑉𝐴(𝑘𝑧 cos𝛼 − 𝑘𝑥 sin𝛼)

∓𝑖𝑘𝑧
±𝑖𝑘𝑥

ª®®®®®®®¬
𝜓

=

©­­­­­­­­­­«

𝑖 𝜔
𝑉𝐴

(± csc𝛼 − 𝑝 cot𝛼)
−𝑖𝜔𝑝

𝜌𝜈𝜔2

𝑉2
𝐴

(
csc2 𝛼 + 𝑝2(cot2 𝛼 − 1) ∓ 2𝑝 cot𝛼 csc𝛼

)
−2𝜌𝜈𝜔

2

𝑉2
𝐴

𝑝 (± csc𝛼 − 𝑝 cot𝛼) + 𝑖𝜌𝜔 − cos 𝛼±𝑝𝑉𝐴

sin 𝛼

𝑖 𝜔
𝑉𝐴

(− csc𝛼 ± 𝑝 cot𝛼)
±𝑖𝜔𝑝

ª®®®®®®®®®®¬
𝜓

(98)

4.2.2 The Hartmann layer

The Hartmann layer is derived from the same set of equations as the Alfvén waves, hence the equations
that govern the relations between fields are the same (eq.92). One only needs to plug in a different
dispersion relation (eq.??)

𝑘𝑧 = ±𝑖 𝜔
𝑉𝐴

𝑆𝜂 sin𝛼
√

Pm
+𝑂 (𝜖𝜂) = ±𝑖𝑉𝐴 sin𝛼

√
𝜈𝜂

+𝑂 (𝜖𝜂).

The only allowed solution here is Im[𝑘𝑧] > 0. This solution gives a wave that is decaying in the −𝑧
direction, which is permitted in the system. The quantities

𝜔𝑝𝑉𝐴 cos𝛼 + 𝑘𝑧𝑉𝐴 sin𝛼 =
𝑉2
𝐴√
𝜈𝜂

(
𝜔
√
𝜈𝜂

𝑉2
𝐴

𝑝𝑉𝐴 cos𝛼 + 𝑖 sin2 𝛼

)
= 𝑖

𝑉2
𝐴√
𝜈𝜂

sin2 𝛼 +𝑂 (𝜖𝜂)

𝜔2𝑝2 + 𝑘2
𝑧 =

𝑉2
𝐴

𝜈𝜂

©­«
(
𝜔
√
𝜈𝜂

𝑉2
𝐴

𝑝𝑉𝐴

)2

− sin2 𝛼 +𝑂 (𝜖𝜂)
ª®¬ = −

𝑉2
𝐴

𝜈𝜂
sin2 𝛼 +𝑂 (𝜖𝜂)

(99)

are all dominated by the imaginary 𝑘𝑧 with large absolute value to first order. Therefore, we have

𝐴𝑘 = −𝑉𝐴(𝑘𝑥 cos𝛼 + 𝑘𝑧 sin𝛼)
𝜔 − 𝑖𝜂(𝑘2

𝑥 + 𝑘2
𝑧)

= −
𝑖𝑉2
𝐴

sin2 𝛼/√𝜈𝜂 +𝑂 (𝜖𝜂)

𝑖𝑉2
𝐴

sin2 𝛼/𝜈
(
1 − 𝑖 𝜔𝜈

𝑉2
𝐴

csc2 𝛼 +𝑂 (𝜖𝜂)
)

= −
√︂
𝜈

𝜂
+𝑂 (𝜖𝜂) = −

√
Pm +𝑂 (𝜖𝜂)

(100)

In the end, using these quantities, eq.(92) is rewritten as

b = −
√

Pm u

𝝉 = −𝑖𝜌𝜈𝜔𝑝(x̂u + ux̂) + 𝜌𝜈𝑉𝐴 sin𝛼
√
𝜈𝜂

(ẑu + uẑ) −
√

Pm𝜌𝑉𝐴[(cos𝛼x̂ + sin𝛼ẑ) · u]I

e =
(
𝑖
√
𝜈𝜂𝜔𝑝 +𝑉𝐴 cos𝛼

)
x̂ × u +𝑂 (𝜖𝜂)𝑉𝐴 sin𝛼ẑ × u.

(101)
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The field vector encoding the Hartmann boundary layer polarized along 𝑦 axis can be written as

fBLH =

©­­­«
𝑢𝑦
𝜏𝑧𝑦
𝑏𝑦
𝑒𝑥

ª®®®¬ =

©­­­«
1

𝜌
√

Pm𝑉𝐴 sin𝛼
−
√

Pm
0

ª®®®¬ 𝑢𝑦 . (102)

A surprising revelation is that such Hartmann layer solution is void of electric field 𝑒𝑥 , at least to the
leading order of 𝜖𝜂 , relative to 𝑉𝐴𝑢𝑦 . The electric field, that gives rise to the conducted current, cancels
out in the Galilean transform with the term u×B0. Once again employing the 𝑦-component of the stream
function, the in-plane mode of Hartmann layer is encoded by the vector

fBLV =

©­­­­­­­«

𝑢𝑥
𝑢𝑧
𝜏𝑧𝑥
𝜏𝑧𝑧
𝑏𝑥
𝑏𝑧

ª®®®®®®®¬
=

©­­­­­­­«

𝑖𝑘𝑧
−𝑖𝑘𝑥

𝜌𝜈(𝑘2
𝑧 − 𝑘2

𝑥)
−2𝜌𝜈𝑘𝑥𝑘𝑧 + 𝑖𝜌𝐴𝑘𝑉𝐴(𝑘𝑧 cos𝛼 − 𝑘𝑥 sin𝛼)

𝑖𝐴𝑘𝑘𝑧
−𝑖𝐴𝑘𝑘𝑥

ª®®®®®®®¬
𝜓

=

©­­­­­­­­­­­«

−𝑉𝐴 sin 𝛼√
𝜈𝜂

−𝑖𝜔𝑝

−𝜌𝑉
2
𝐴

𝜂

(
sin𝛼2 + 𝑝2

(
𝜔𝜂

𝑉2
𝐴

)2
Pm

sin2 𝛼

)
−2𝑖

√
Pm𝜌𝜔𝑝 sin𝛼 + 𝜌𝜔 sin𝛼

(
𝑉2
𝐴

𝜔𝜂
cos𝛼 + 𝑖𝑝

√
Pm

)
𝑉𝐴 sin 𝛼

𝜂

𝑖
√

Pm𝜔𝑝

ª®®®®®®®®®®®¬
𝜓

≈

©­­­­­­­­­­«

− 𝑉𝐴√
𝜈𝜂

sin𝛼
−𝑖𝜔𝑝

−𝜌𝑉
2
𝐴

𝜂
sin2 𝛼

−𝑖𝜌𝜔𝑝𝑉𝐴 sin𝛼
√

Pm + 𝜌𝑉2
𝐴

𝜂
sin𝛼 cos𝛼

𝑉𝐴

𝜂
sin𝛼

𝑖𝜔𝑝
√

Pm

ª®®®®®®®®®®¬
𝜓.

(103)

4.2.3 The acoustic/elastic waves

In the derivations of Alfvén waves in the first section, I have made the assumption of incompressible
fluid. This is justifiable since the typical velocities both of Alfvén wave and of the fluid parcels are much
smaller than the sound speed. However, I have to relax this approximation because of the additional
continuity conditions.

[The coexistence of Alfvén wave and acoustic wave in a compressible medium is shown in the
appendix]. In an elastic medium, a longitudinal wave (S-wave) is further possible. The velocities of
compressional wave (P) and longitudinal wave (S) are given by 𝛼 and 𝛽, respectively. In the fluid, 𝛽 → 0.

In this part I shall assume that the acoustic wave has negligible electromagnetic effects, an assumption
that will be looked at in more details later. Under this assumption, these waves are simply pure
acoustic/elastic waves in isotropic medium. The plane wave ansatz gives

u𝑃 = u𝑃 exp

{
𝑖𝜔

(
𝑡 − 𝑝𝑥 ∓

√︂
1
𝛼2 − 𝑝2𝑧

)}
, u𝑆 = u𝑆 exp

{
𝑖𝜔

(
𝑡 − 𝑝𝑥 ∓

√︄
1
𝛽2 − 𝑝2𝑧

)}
. (104)

Note these are velocity fields, same as in fluids. The associated displacement fields requires a time
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integral, and takes the form

U𝑃 =

∫
u𝑃 𝑑𝑡 =

u𝑃

𝑖𝜔
, U𝑆 =

∫
u𝑆 𝑑𝑡 =

u𝑆

𝑖𝜔
. (105)

The stress fields are given by the constitutive relation

𝝉 = 𝜆(∇ · U)I + 𝜇(∇U + ∇U𝑇 )

=
𝜆

𝑖𝜔
(∇ · u)I + 𝜇

𝑖𝜔

(
∇u + ∇u𝑇

)
= − 𝜆

𝜔
(𝑘𝑥 x̂ + 𝑘𝑧 ẑ) · u I − 𝜇

𝜔
[𝑘𝑥 (x̂u + ux̂) + 𝑘𝑧 (ẑu + uẑ)]

(106)

where 𝜆 and 𝜇 are Lame constants, linked to wave velocities via

𝛼2 =
𝜆 + 2𝜇
𝜌

, 𝛽2 =
𝜇

𝜌
.

I shall separate the acoustic/elastic waves into three modes. For SH wave in elastic medium, u = 𝑢𝑦 ŷ.
The stress is given by

𝝉 = −𝜇
[
𝑝(x̂ŷ + ŷx̂) ±

√︄
1
𝛽2 − 𝑝2(ẑŷ + ŷẑ)

]
𝑢𝑦

= −𝜌𝛽2𝑝(x̂ŷ + ŷx̂)𝑢𝑦 ∓ 𝜌𝛽
√︃

1 − 𝑝2𝛽2(ẑŷ + ŷẑ)𝑢𝑦 .

(107)

SH wave only generates shear stress between 𝑥𝑦 and 𝑧𝑦. In particular, the 𝜏𝑧𝑦 component couples this
mode with similarly horizontally polarized Alfvén waves and Hartmann layer solutions. The SH wave is
encoded by the field vector

fSH =

©­­­«
𝑢𝑦
𝜏𝑧𝑦
𝑏𝑦
𝑒𝑥

ª®®®¬ =

©­­­«
1

∓𝜌𝛽
√︁

1 − 𝑝2𝛽2

0
0

ª®®®¬ 𝑢𝑦 . (108)

For P-wave in elastic medium, or acoustic wave in the fluid, I again invoke the scalar potential 𝜙, so that
𝑢𝑥 = 𝜕𝑥𝜙 = −𝑖𝜔𝑝𝜙 and 𝑢𝑧 = 𝜕𝑧𝜙 = ∓𝑖𝜔

√︁
𝛼−2 − 𝑝2𝜙. The stress field is related to the velocity field by

𝝉 =
𝜆

𝑖𝜔
∇2𝜙I + 2

𝜇

𝑖𝜔
∇∇𝜙 = 𝑖𝜆

𝜔

𝛼2 𝜙I + 2𝑖𝜇𝜔
(
𝑝2x̂x̂ + (𝛼−2 − 𝑝2)ẑẑ ± 𝑝

√︃
𝛼−2 − 𝑝2(x̂ẑ + ẑx̂)

)
𝜙

= 𝑖𝜌𝜔

(
1 − 𝛽2

𝛼2

)
𝜙I + 𝑖2𝜌𝜔

(
𝑝2𝛽2x̂x̂ +

(
𝛽2

𝛼2 − 𝑝2𝛽2
)

ẑẑ ± 𝑝𝛽
√︂
𝛽2

𝛼2 − 𝑝2𝛽2(x̂ẑ + ẑx̂)
)
𝜙

(109)

and the P-wave is encoded by

fP =

©­­­­­­­«

𝑏𝑥
𝑏𝑧
𝑢𝑥
𝑢𝑧
𝜏𝑧𝑥
𝜏𝑧𝑧

ª®®®®®®®¬
=

©­­­­­­­­­­«

0
0

−𝑖𝜔𝑝
∓𝑖 𝜔

𝛼

√︁
1 − 𝑝2𝛼2

±2𝑖𝜌𝜔𝑝𝛽
√︃
𝛽2

𝛼2 − 𝑝2𝛽2

𝑖𝜌𝜔

(
1 − 2 𝛽

2

𝛼2

)
+ 2𝑖𝜌𝜔

(
𝛽2

𝛼2 − 𝑝2𝛽2
)

ª®®®®®®®®®®¬
𝜙 =

©­­­­­­­­­«

0
0

−𝑖𝜔𝑝
∓𝑖 𝜔

𝛼

√︁
1 − 𝑝2𝛼2

±𝑖2𝜌𝜔𝑝𝛽
√︃
𝛽2

𝛼2 − 𝑝2𝛽2

𝑖𝜌𝜔
(
1 − 2𝑝2𝛽2)

ª®®®®®®®®®¬
𝜙. (110)

We also note the conversion between the scalar potential and the velocity amplitude

𝑢𝑃 =

√︃
𝑢2
𝑥 + 𝑢2

𝑧 = −𝑖 𝜔
𝛼
𝜙.
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Using this relation, the P-wave can also be expressed as

fP =

©­­­­­­­­­«

0
0
𝑝𝛼

±
√︁

1 − 𝑝2𝛼2

∓2𝜌𝑝𝛼𝛽
√︃
𝛽2

𝛼2 − 𝑝2𝛽2

−𝜌𝛼(1 − 2𝑝2𝛽2)

ª®®®®®®®®®¬
𝑢𝑃 . (111)

Finally, the SV-wave can be described by a scalar stream function as u = ∇× (𝜓ŷ). The velocity field
thus takes the form 𝑢𝑥 = −𝜕𝑧𝜓 = 𝑖𝑘𝑧𝜓 = ±𝑖𝜔

√︁
𝛽−2 − 𝑝2𝜓 and 𝑢𝑧 = 𝜕𝑥𝜓 = −𝑖𝑘𝑥𝜓 = −𝑖𝜔𝑝𝜓. If we take

𝑢𝑧/𝑢SV > 0 as the positive direction, the amplitude of the wave is expressed in the stream function as

𝑢SV =

√︃
𝑢2
𝑥 + 𝑢2

𝑧 = −𝑖 𝜔
𝛽
𝜓.

The stress field is given by

𝝉 =
𝜇

𝑖𝜔

(
−2

𝜕2𝜓

𝜕𝑥𝜕𝑧
x̂x̂ + 2

𝜕2𝜓

𝜕𝑥𝜕𝑧
ẑẑ +

(
𝜕2𝜓

𝜕𝑥2 − 𝜕2𝜓

𝜕𝑧2

)
(x̂ẑ + ẑx̂)

)
=
𝜇

𝑖𝜔

(
2𝑘𝑥𝑘𝑧 (x̂x̂ − ẑẑ) + (𝑘2

𝑧 − 𝑘2
𝑥) (x̂ẑ + ẑx̂)

)
𝜓

=
𝜇

𝑖𝜔

(
±2𝜔2𝑝

√︄
1
𝛽2 − 𝑝2(x̂x̂ − ẑẑ) + 𝜔2

(
1
𝛽2 − 2𝑝2

)
(x̂ẑ + ẑx̂)

)
𝜓

= ∓𝑖2𝜌𝜔𝑝𝛽
√︃

1 − 𝑝2𝛽2𝜓(x̂x̂ − ẑẑ) − 𝑖𝜌𝜔(1 − 2𝑝2𝛽2)𝜓(x̂ẑ + ẑx̂)

(112)

So the SV-wave is encoded by

fSV =

©­­­­­­­«

𝑏𝑥
𝑏𝑧
𝑢𝑥
𝑢𝑧
𝜏𝑧𝑥
𝜏𝑧𝑧

ª®®®®®®®¬
=

©­­­­­­­­«

0
0

±𝑖 𝜔
𝛽

√︁
1 − 𝑝2𝛽2

−𝑖𝜔𝑝
−𝑖𝜌𝜔(1 − 2𝑝2𝛽2)

±𝑖2𝜌𝜔𝑝𝛽
√︁

1 − 𝑝2𝛽2

ª®®®®®®®®¬
𝜓 =

©­­­­­­­­«

0
0

∓
√︁

1 − 𝑝2𝛽2

𝑝𝛽

𝜌𝛽(1 − 2𝑝2𝛽2)
∓𝜌𝛽2

√︁
1 − 𝑝2𝛽2

ª®®®®®®®®¬
𝑢SV. (113)

4.2.4 Electromagnetic waves

Assuming purely electromagnetic waves in the (solid) medium, we have the Ampere’s law,

∇ × b =
1
𝜂

e + 1
𝑐2
𝜕e
𝜕𝑡

which reads in the frequency-wavenumber domain(
1
𝜂
+ 𝑖 𝜔
𝑐2

)
e = −𝑖(𝑘𝑥 x̂ + 𝑘𝑧 ẑ) × b. (114)

We always assume that 𝜂 > 𝜖 > 0 in the solid. When 𝜂 is finite, i.e. electrically conducting, and𝜔𝜂 ≪ 𝑐2

or 𝜎 ≫ 𝜔𝜀0, we can safely drop the displacement current and write

e = −𝑖𝜂(𝑘𝑥 x̂ + 𝑘𝑧 ẑ) × b. (115)
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This is sometimes referred to as the "good conductor" approximation. The solution for 𝑘𝑧 under this
approximation is given by eq.(59). If such approximation does not hold, e.g. when 𝜂 → +∞ and 𝜂−1 → 0
as in the insulating medium, the electric field is

e = −𝑐
2

𝜔
(𝑘𝑥 x̂ + 𝑘𝑧 ẑ) × b. (116)

The solution for 𝑘𝑧 under this approximation is given by eq.(64-65). In general, the electric field for
finite 𝜂 which does not fulfill good conductor nor perfect insulator approximations is given by

e = −𝑖 𝜂

1 + 𝑖 𝜔𝜂
𝑐2

(𝑘𝑥 x̂ + 𝑘𝑧 ẑ) × b. (117)

For electromagnetic waves with magnetic field polarized in the 𝑦 direction, the vector encoding is

fMH =

©­­­«
𝑢𝑦
𝜏𝑧𝑦
𝑏𝑦
𝑒𝑥

ª®®®¬ =

©­­­­«
0
0
1
𝑖𝜂𝑘𝑧

1+𝑖𝜔𝜂/𝑐2

ª®®®®¬
𝑏𝑦 . (118)

When magnetic field is polarized in the 𝑂𝑥𝑧 plane, we resort to the 𝑦-component of the scalar potential
𝐴 = ŷ · A so that 𝑏𝑥 = −𝜕𝑧𝐴 = 𝑖𝑘𝑧𝐴 and 𝑏𝑧 = 𝜕𝑥𝐴 = −𝑖𝑘𝑥𝐴. The vector encoding is

fMV =

©­­­­­­­«

𝑢𝑥
𝑢𝑧
𝜏𝑧𝑥
𝜏𝑧𝑧
𝑏𝑥
𝑏𝑧

ª®®®®®®®¬
=

©­­­­­­­«

0
0
0
0
𝑖𝑘𝑧
−𝑖𝑘𝑥

ª®®®®®®®¬
𝐴. (119)

4.3 Solutions at insulating wall

I state the general assumptions made in this section as follows. The Lundquist number is large (𝜖𝜂 ≪ 1)
although the fluid is not ideal, the magnetic Prandtl number is either of order unity or small (PM <∼ 1),
and the background field has significant interface normal component (sin𝛼 ∼ 1). It is also required that
𝛽𝐴 = 𝑉𝐴/𝑐 ≪ 1 for the derivations to hold. This means that the Alfvén wave speed is much smaller than
the light speed, such that the low-speed limit of the Lorentz transform is applicable.

4.3.1 Solution to horizontally-polarized system at insulating wall

Recall the boundary conditions and the associated modes in horizontally-polarized system, we write

fAH−I + fAH−R + fBLH = f𝑧=0− =

©­­­«
𝑢𝑦
𝜏𝑧𝑦
𝑏𝑦
𝑒𝑥

ª®®®¬𝑧=0−

=

©­­­«
𝑢𝑦
𝜏𝑧𝑦
𝑏𝑦
𝑒𝑥

ª®®®¬𝑧=0+

= f𝑧=0+ = fSH + fMH. (120)

Plugging in all the expressions for the individual modes, we arrive at

©­­­­«
1 1 1 −1 0

−𝑖 𝜌𝜔𝜈
𝑉𝐴

1−𝑝𝑉𝐴 cos 𝛼
sin 𝛼 −𝑖 𝜌𝜔𝜈

𝑉𝐴

−1−𝑝𝑉𝐴 cos 𝛼
sin 𝛼 𝜌𝑉𝐴 sin𝛼

√
Pm 𝜌𝛽

√︁
1 − 𝑝2𝛽2 0

−1 1 −
√

Pm 0 −1
−𝑉𝐴 sin𝛼 −𝑉𝐴 sin𝛼 0 0 −𝑖𝜂𝑘𝑧

1+𝑖𝜔𝜂/𝑐2

ª®®®®¬
©­­­­­«
𝑢0

𝑢𝑅

𝑢BL

𝑢SH

𝑏MH

ª®®®®®¬
= 0.
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Note that we are working in the scenario where the wall is an insulator. Therefore 𝜂 → +∞, and
−𝑖𝜂𝑘𝑧/(1 + 𝑖𝜔𝜂/𝑐2) → −𝑐2𝑘𝑧/𝜔. In addition, in the insulator, the vertical wavenumber is given by
𝑘𝑧 =

𝜔
𝑐

√︁
1 − 𝑝2𝑐2. Rearranging the terms, and setting incidence Alfvén wave 𝑢0 = 0 as the reference

amplitude, we have

©­­­­«
1 1 −1 0

𝑖
𝜌𝜔𝜈

𝑉𝐴

1+𝑝𝑉𝐴 cos 𝛼
sin 𝛼 𝜌𝑉𝐴 sin𝛼

√
Pm 𝜌𝛽

√︁
1 − 𝑝2𝛽2 0

1 −
√

Pm 0 −1
−𝑉𝐴 sin𝛼 0 0 −𝑐

√︁
1 − 𝑝2𝑐2

ª®®®®¬
©­­­«
𝑢𝑅

𝑢BL

𝑢SH

𝑏MH

ª®®®¬ =

©­­­­«
−1

𝑖
𝜌𝜔𝜈

𝑉𝐴

1−𝑝𝑉𝐴 cos 𝛼
sin 𝛼

1
𝑉𝐴 sin𝛼

ª®®®®¬
(121)

Nondimensionalizing the coefficients of the linear system gives

©­­­­«
1 1 −1 0

−𝑖𝜖𝜂Pm𝑘̃−
√

Pm sin𝛼 𝛾−1
𝑀𝛽

0
1 −

√
Pm 0 −1

− sin𝛼 0 0 −𝛾−1
𝛽𝐴

ª®®®®¬
©­­­«
𝑢𝑅

𝑢BL

𝑢SH

𝑏MH

ª®®®¬ =

©­­­«
−1

𝑖𝜖𝜂Pm𝑘̃+
1

sin𝛼

ª®®®¬ . (122)

The newly introduced dimensionless numbers are:

𝑘̃± =
±1 − 𝑝𝑉𝐴 cos𝛼

sin𝛼
,

𝛾𝑀𝛽
=
𝑉𝐴

𝛽

1√︁
1 − 𝑝2𝛽2

=
𝑀𝐴𝛽√︃

1 − 𝑝2/𝑀2
𝐴𝛽

,

𝛾𝛽𝐴 =
𝑉𝐴

𝑐

1√︁
1 − 𝑝2𝑐2

=
𝛽𝐴√︃

1 − 𝑝2/𝛽2
𝐴

,

(123)

where 𝑀𝐴𝛽 = 𝑉𝐴/𝛽 is the Alfvén Mach number with respect to S-wave, which gives the ratio of Alfvén
wave velocity to shear wave speed; 𝛽𝐴 = 𝑉𝐴/𝑐 gives the ratio between Alfvén wave velocity and light
speed. The reflection and transmission coefficients of the Alfvén wave at the boundary are then the
solutions to the linear system, concisely written as

Fw = f0. (124)

This would be the form that every problem should eventually reduce to.
Under the conditions of the Earth’s core, some dimensionless numbers are so extreme that simplifica-

tions can be safely made. Indeed, assuming an Alfvén wave speed of 0.05m/s in the fluid, and an S-wave
speed of 7km/s in the solid, the Alfvén-S Mach number is 𝑀𝛽 ≈ 10−5; the ratio of Alfvén wave speed to
light speed is even smaller, given by 𝛽𝐴 ≈ 10−10. Given that 𝑝 is zero (normal incidence of travelling
Alfvén wave) or of order unity (at some finite incidence angle, say between 5 to 85◦), the dimensionless
group |𝛾𝑀𝛽

| ∼ 𝑀𝐴𝛽
− 𝑀2

𝐴𝛽
∼ 10−5 − 10−10, respectively, and |𝛾𝛽𝐴 | ∼ 𝛽𝐴 − 𝛽2

𝐴
∼ 10−10 − 10−20. This

means that the original linear equation can be reinterpreted in two ways. First, from the force balance
indicated by the continuity of traction, 𝑢BL has such dominant coefficient that, to leading order of 𝑀𝐴𝛽 ,
it indicates 𝑢BL = 0. The same thing can be said about 𝑏MH, when analyzing the continuity of electric
field to leading order of 𝛽𝐴. On the other hand, one can also argue that 𝑢BL and 𝑏MH must be at least
𝑂 (𝑀𝐴𝛽) and 𝑂 (𝛽𝐴) of the input field 𝑢𝑅, so much so that they must have negligibly small contributions
in the continuity of velocity and magnetic field. Either way, the arguments lead to simplified system(

1 1
1 −

√
Pm

) (
𝑢𝑅

𝑢BL

)
=

(
−1
1

)
(125)

which gives exactly the same answer as in Schaeffer, Jault, et al. (2012)

𝑢𝑅 =
1 −

√
Pm

1 +
√

Pm
, 𝑢BL = − 2

1 +
√

Pm
. (126)
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Without making such assumptions, however, we would then need to solve the whole 4-D system (eq.122).
Making use of the symbolic mathematics package SymPy, we arrive at

𝑢𝑅 =

1 −
√

Pm + 𝛾𝑀𝛽

(√
Pm sin𝛼 + 𝑖𝜖𝜂Pm3/2 𝑘̃+

)
− 𝛾𝛽𝐴 sin𝛼 − 𝛾𝑀𝛽

𝛾𝛽𝐴

√
Pm sin2 𝛼

1 +
√

Pm + 𝛾𝑀𝛽

(√
Pm sin𝛼 − 𝑖𝜖𝜂Pm3/2 𝑘̃−

)
+ 𝛾𝛽𝐴 sin𝛼 + 𝛾𝑀𝛽

𝛾𝛽𝐴

√
Pm sin2 𝛼

=

(
1 + 𝛾𝑀𝛽

√
Pm sin𝛼

) (
1 − 𝛾𝛽𝐴 sin𝛼

)
−
√

Pm + 𝑖𝜖𝜂𝛾𝑀𝛽
Pm

3
2 𝑘̃+(

1 + 𝛾𝑀𝛽

√
Pm sin𝛼

) (
1 + 𝛾𝛽𝐴 sin𝛼

)
+
√

Pm − 𝑖𝜖𝜂𝛾𝑀𝛽
Pm

3
2 𝑘̃−

=

(
1 + 𝑀𝛽

√
Pm sin 𝛼√

1−𝑝2𝛽2

) (
1 − 𝛽𝐴 sin 𝛼√

1−𝑝2𝑐2

)
−
√

Pm + 𝑖𝑀𝛽𝜖𝜂Pm
3
2 sin 𝛼(1− 𝑝̄ cos 𝛼)√

1−𝑝2𝛽2(
1 + 𝑀𝛽

√
Pm sin 𝛼√

1−𝑝2𝛽2

) (
1 + 𝛽𝐴 sin 𝛼√

1−𝑝2𝑐2

)
+
√

Pm + 𝑖𝑀𝛽𝜖𝜂Pm
3
2 sin 𝛼(1+ 𝑝̄ cos 𝛼)√

1−𝑝2𝛽2

,

(127)

and

𝑢BL =
−2 + 𝑖𝜖𝜂𝛾𝑀𝛽

Pm
(
(1 + 𝛾𝛽𝐴 sin𝛼) 𝑘̃+ + (1 − 𝛾𝛽𝐴 sin𝛼) 𝑘̃−

)(
1 + 𝛾𝑀𝛽

√
Pm sin𝛼

) (
1 + 𝛾𝛽𝐴 sin𝛼

)
+
√

Pm − 𝑖𝜖𝜂𝛾𝑀𝛽
Pm

3
2 𝑘̃−

=

−2
(
1 + 𝑖 𝑀𝛽√

1−𝑝2𝛽2
𝜖𝜂Pm

(
𝑝 cot𝛼 − 𝛽𝐴√

1−𝑝2𝑐2

))
(
1 + 𝑀𝛽

√
Pm sin 𝛼√

1−𝑝2𝛽2

) (
1 + 𝛽𝐴 sin 𝛼√

1−𝑝2𝑐2

)
+
√

Pm + 𝑖𝑀𝛽𝜖𝜂Pm
3
2 sin 𝛼(1+ 𝑝̄ cos 𝛼)√

1−𝑝2𝛽2

.

(128)

The coefficients for the elastic and the electromagnetic waves are given by

𝑢SH = 𝛾𝑀𝛽

2
√

Pm sin𝛼 + 𝑖Pm𝜖𝜂𝛾𝛽𝐴 sin𝛼( 𝑘̃+ − 𝑘̃−) + 𝑖Pm𝜖𝜂 ( 𝑘̃+ + 𝑘̃−) + 𝑖Pm
3
2 𝜖𝜂 ( 𝑘̃+ − 𝑘̃−)(

1 + 𝛾𝑀𝛽

√
Pm sin𝛼

) (
1 + 𝛾𝛽𝐴 sin𝛼

)
+
√

Pm − 𝑖𝜖𝜂𝛾𝑀𝛽
Pm

3
2 𝑘̃−

=
2𝑀𝛽

√
Pm√︁

1 − 𝑝2𝛽2

sin𝛼 + 𝑖𝜖𝜂Pm csc𝛼 − 𝑖𝜖𝜂
√

Pm𝑝 cot𝛼 + 𝑖 𝛽𝐴√
1−𝑝2𝑐2

𝜖𝜂
√

Pm(
1 + 𝑀𝛽

√
Pm sin 𝛼√

1−𝑝2𝛽2

) (
1 + 𝛽𝐴 sin 𝛼√

1−𝑝2𝑐2

)
+
√

Pm + 𝑖𝑀𝛽𝜖𝜂Pm
3
2 sin 𝛼(1+ 𝑝̄ cos 𝛼)√

1−𝑝2𝛽2

(129)

𝑢MH = 𝛾𝛽𝐴 sin𝛼
−2

(
1 + 𝛾𝑀𝛽

√
Pm sin𝛼

)
− 𝑖𝜖𝜂𝛾𝑀𝛽

Pm
3
2 ( 𝑘̃+ − 𝑘̃−)(

1 + 𝛾𝑀𝛽

√
Pm sin𝛼

) (
1 + 𝛾𝛽𝐴 sin𝛼

)
+
√

Pm − 𝑖𝜖𝜂𝛾𝑀𝛽
Pm

3
2 𝑘̃−

=
𝛽2
𝐴√︁

1 − 𝑝2𝑐2

−2 sin𝛼
(
1 + 𝑀𝛽

√
Pm sin 𝛼√

1−𝑝2𝛽2

)
− 𝑖2𝑀𝛽𝜖𝜂Pm

3
2 1√

1−𝑝2𝛽2(
1 + 𝑀𝛽

√
Pm sin 𝛼√

1−𝑝2𝛽2

) (
1 + 𝛽𝐴 sin 𝛼√

1−𝑝2𝑐2

)
+
√

Pm + 𝑖𝑀𝛽𝜖𝜂Pm
3
2 sin 𝛼(1+ 𝑝̄ cos 𝛼)√

1−𝑝2𝛽2

(130)
These are just documented here for completeness, but our major interest is in the reflected Alfvén wave
(eq.127) and perhaps the boundary layer behaviour (eq.128). Indeed, we see that the transmitted SH
wave and the transmitted electromagnetic wave have prefactors 𝛾𝑀𝛽

and 𝛾𝛽𝐴, respectively. At relatively
small 𝛾𝑀𝛽

and 𝛾𝛽𝐴, the two waves have amplitudes

𝑢SH ≈ 𝛾𝑀𝛽

2
√

Pm sin𝛼
1 +

√
Pm

∼ 𝛾𝑀𝛽
, 𝑢MH ≈ −𝛾𝛽𝐴

2 sin𝛼
1 +

√
Pm

∼ 𝛾𝛽𝐴

that scale with 𝛾𝑀𝛽
and 𝛾𝛽𝐴, respectively. Therefore, both waves have negligibly small amplitudes in

comparison to the Alfvén waves and the Hartmann layer at the condition of the Earth’s core (or virtually
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any MHD scenario where 𝑉𝐴 ≪ 𝛽 ≪ 𝑐), although they contibute non-trivially to the stress field and the
electric field at the boundary. Meanwhile, the reflected Alfvén wave and the Hartmann layer solutions
revert back to the simplified case (eq.126) at 𝛾𝑀𝛽

≪ 1 and 𝛾𝛽𝐴 ≪ 1.
As a final remark, recall that throughout the derivation, we actually only used the so-called "zeroth-

order" approximations of the vertical wavenumber for the Alfvén wave and Hartmann layer. Each element
in the linear system (eq.122) that corresponds to the MHD waves comes with a relative error of 𝑂 (𝜖𝜂).
Taking that into account, the reflected wave coefficients are more properly written as follows

𝑢𝑅 =

(
1 + 𝛾𝑀𝛽

√
Pm sin𝛼

) (
1 − 𝛾𝛽𝐴 sin𝛼

)
−
√

Pm +𝑂 (𝜖𝜂)(
1 + 𝛾𝑀𝛽

√
Pm sin𝛼

) (
1 + 𝛾𝛽𝐴 sin𝛼

)
+
√

Pm +𝑂 (𝜖𝜂)
,

𝑢BL =
−2 +𝑂 (𝜖𝜂)(

1 + 𝛾𝑀𝛽

√
Pm sin𝛼

) (
1 + 𝛾𝛽𝐴 sin𝛼

)
+
√

Pm +𝑂 (𝜖𝜂)
.

(131)

It follows that when 𝛾𝑀𝛽
<∼ 𝜖𝜂 and 𝛾𝛽𝐴 <∼ 𝜖𝜂 , the additional terms sadly do not necessarily yield

more accurate results than the simplified relation. Only when some of these dimensionless numbers are
magnitude(s) larger than the inverse Lundquist number can these terms be actually used. In particular,
one might expect the role of 𝛾𝑀𝛽

√
Pm sin𝛼 to be important when the Alfvén wave speed is somewhat

close to the longitudinal wave speed in the bordering elastic medium.

4.3.2 Solution to vertically-polarized system at insulating wall

4.4 Solutions at conductive wall

4.4.1 Solution to horizontally-polarized system at conductive wall

4.4.2 Solution to vertically-polarized system at conductive wall

4.5 Magneto-acoustic/elastic waves

We see that in some scenarios, the incompressible approximation needs to be relaxed to permit acoustic
waves in the medium. Moreover, elastic waves are introduced in the bordering wall to account for
the remanent displacement and stress. A natural question is, what are the electromagnetic effects of
these waves? Conversely, one can ask what are the mechanical effects of electromagnetic waves? In
this section, I shall look at the waves (modes) in the medium when both elasticity and electromagnetic
properties are taken into account.

4.5.1 Magneto-acoustic waves

In fluid, we consider the following linearized set of governing equations,

𝜕u
𝜕𝑡

= −∇ 𝑝

𝜌0
+ 1
𝜌0𝜇0

(∇ × b) × B0 + 𝜈∇ ·
(
∇u + ∇u𝑇 − 2

3
∇ · uI

)
,

𝜕𝜌

𝜕𝑡
+ 𝜌0∇ · u = 0,

𝑝

𝑝0
= 𝛾

𝜌

𝜌0
,

𝜕b
𝜕𝑡

= ∇ × (u × B0) + 𝜂∇2b.

(132)

Here I assume the background velocity field u0 = 0, and a uniform background magnetic field B0. The
background state is considered to be in hydrostatic equilibrium. All quantities without the 0 subscript,
i.e. 𝜌, u, 𝑝, b, are all considered infinitesimal perturbations. The equation of state 𝑝/𝑝0 = 𝛾𝜌/𝜌0 takes
a further assumption that the process is isentropic. Considering the potentially low frequency of the
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waves, this assumption may be problematic. Note that ∇ · (∇u + ∇u𝑇 − (2/3)∇ · uI) can be written
as ∇2u + (1/3)∇(∇ · u), the Lorentz force (∇ × b) × B0 = B0 · ∇b − ∇b · B0, and the induction term
∇ × (u × B0) = B0 · ∇u − B0(∇ · u). The governing equation can be rewritten as

𝜕u
𝜕𝑡

= −∇
(
𝑝

𝜌0
+ 1
𝜌𝜇0

B0 · b − 𝜈

3
∇ · u

)
+ 1
𝜌𝜇0

B0 · ∇b + 𝜈∇2u,

𝜕𝑝

𝜕𝑡
= −𝛾𝑝0∇ · u,

𝜕b
𝜕𝑡

= B0 · ∇u − B0∇ · u + 𝜂∇2b.

(133)

There are multiple ways to proceed from here. If one takes 𝑆𝜂 ≫ 1 and neglects the viscous and magnetic
diffusion, one can take a time derivative of the Navier-Stokes equation and merge the three equations
into one. Then one can use the plane wave ansatz and solve the eigenvalue problem. Here I skip the first
step and directly transform the equations into frequency-wavenumber domain, and write(

(𝑖𝜔 + 𝜈𝑘2)I + 𝜈
3

kk
)
· u − 𝑖 k

𝜌0
𝑝 + 𝑖

𝜌𝜇0
((B0 · k)I − kB0) · b = 0,

𝑖𝛾𝑝0k · u − 𝑖𝜔𝑝 = 0,

𝑖 ((B0 · k)I − B0k) · u + (𝑖𝜔 + 𝜂𝑘2)b = 0

(134)

which gives seven linear scalar equations, summarized in the matrix form

©­«
(𝑖𝜔 + 𝜈𝑘2)I + 𝜈

3 kk −𝑖 k
𝜌0

𝑖
𝜌𝜇0

((B0 · k)I − kB0)
𝑖𝛾𝑝0k𝑇 −𝑖𝜔 0

𝑖 ((B0 · k)I − B0k) 0 (𝑖𝜔 + 𝜂𝑘2)I

ª®¬ ©­«
u
𝑝

b

ª®¬ = 0 (135)

Without loss of generality, I take B0 = 𝐵0ẑ, and k = 𝑘𝑥 x̂ + 𝑘𝑧 ẑ. The wave vector and the background
field then defines the 𝑂𝑥𝑧 plane. Writing out the equation in components,

©­­­­­­­­­­­­«

𝑖𝜔 + 𝜈
(
𝑘2 + 𝑘2

𝑥

3

)
0 𝜈

3 𝑘𝑥𝑘𝑧 −𝑖 𝑘𝑥
𝜌0

𝑖
𝐵0𝑘𝑧
𝜌0𝜇0

0 −𝑖 𝐵0𝑘𝑥
𝜌𝜇0

0 𝑖𝜔 + 𝜈𝑘2 0 0 0 𝑖
𝐵0𝑘𝑧
𝜌0𝜇0

0
𝜈
3 𝑘𝑥𝑘𝑧 0 𝑖𝜔 + 𝜈

(
𝑘2 + 𝑘2

𝑧

3

)
−𝑖 𝑘𝑧
𝜌0

0 0 0
𝑖𝛾𝑝0𝑘𝑥 0 𝑖𝛾𝑝0𝑘𝑧 −𝑖𝜔 0 0 0
𝑖𝐵0𝑘𝑧 0 0 0 𝑖𝜔 + 𝜂𝑘2 0 0

0 𝑖𝐵0𝑘𝑧 0 0 0 𝑖𝜔 + 𝜂𝑘2 0
−𝑖𝐵0𝑘𝑥 0 0 0 0 0 𝑖𝜔 + 𝜂𝑘2

ª®®®®®®®®®®®®¬

©­­­­­­­­­«

𝑢𝑥
𝑢𝑦
𝑢𝑧
𝑝

𝑏𝑥
𝑏𝑦
𝑏𝑧

ª®®®®®®®®®¬
= 0

(136)
At this stage we apply the high Lundquist number approximation, and get rid of all diffusion terms. The
simplified matrix equation is

©­­­­­­­­­­­«

𝑖𝜔 0 0 −𝑖 𝑘𝑥
𝜌0

𝑖
𝐵0𝑘𝑧
𝜌0𝜇0

0 −𝑖 𝐵0𝑘𝑥
𝜌𝜇0

0 𝑖𝜔 0 0 0 𝑖
𝐵0𝑘𝑧
𝜌0𝜇0

0
0 0 𝑖𝜔 −𝑖 𝑘𝑧

𝜌0
0 0 0

𝑖𝛾𝑝0𝑘𝑥 0 𝑖𝛾𝑝0𝑘𝑧 −𝑖𝜔 0 0 0
𝑖𝐵0𝑘𝑧 0 0 0 𝑖𝜔 0 0

0 𝑖𝐵0𝑘𝑧 0 0 0 𝑖𝜔 0
−𝑖𝐵0𝑘𝑥 0 0 0 0 0 𝑖𝜔

ª®®®®®®®®®®®¬

©­­­­­­­­­«

𝑢𝑥
𝑢𝑦
𝑢𝑧
𝑝

𝑏𝑥
𝑏𝑦
𝑏𝑧

ª®®®®®®®®®¬
= 0 (137)

Despite its apparent complexity, one can exploit the sparsity of the matrix and the many common factors,
and use elementary row operations to simplify the matrices. Note that these elementary row operations
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are just algebraic equivalence of subtitution of variables when working with differential equations. These
row operations yield the following equivalent equation

©­­­­­­­­­­­«

−𝜔2 + 𝛼2𝑘2
𝑥 +

𝐵2
0

𝜌0𝜇0
𝑘2 0 𝛼2𝑘𝑥𝑘𝑧 0 0 0 0

0 −𝜔2 + 𝐵2
0

𝜌0𝜇0
𝑘2
𝑧 0 0 0 0 0

𝛼2𝑘𝑥𝑘𝑧 0 −𝜔2 + 𝛼2𝑘2
𝑧 0 0 0 0

𝜌0𝛼
2𝑘𝑥 0 𝜌0𝛼

2𝑘𝑧 −𝜔 0 0 0
𝐵0𝑘𝑧 0 0 0 𝜔 0 0

0 𝐵0𝑘𝑧 0 0 0 𝜔 0
−𝐵0𝑘𝑧 0 0 0 0 0 𝜔

ª®®®®®®®®®®®¬

©­­­­­­­­­«

𝑢𝑥
𝑢𝑦
𝑢𝑧
𝑝

𝑏𝑥
𝑏𝑦
𝑏𝑧

ª®®®®®®®®®¬
= 0. (138)

The almost-lower-triangular structure (or block-diagonal, depending on how this is viewed) makes the
determinant of the matrix a piece of cake. The determinant is simply

det A = −𝜔4

������−𝜔
2 + 𝛼2𝑘2

𝑥 +𝑉2
𝐴
𝑘2 0 𝛼2𝑘𝑥𝑘𝑧

0 −𝜔2 +𝑉2
𝐴
𝑘2
𝑧 0

𝛼2𝑘𝑥𝑘𝑧 0 −𝜔2 + 𝛼2𝑘2
𝑧

������ = 0 (139)

The degree-10 polynomial has four trivial roots, 𝜔7 = 𝜔8 = 𝜔9 = 𝜔10 = 0. It does not mean that the
original system has four-fold degeneracy, however, since three of them are apparently artificially added
during elementary row operations to avoid having 𝜔 on the denominator. Plugging 𝜔 = 0 into the
original matrix, we find that the zero-frequency mode somehow fulfills 𝑏𝑦 = 0 and 𝑘𝑧𝑏𝑥 − 𝑘𝑥𝑏𝑧 = 0.
However, due to the solenoidal condition, 𝑘𝑥𝑏𝑥 + 𝑘𝑧𝑏𝑧 = 0. Augmenting these two equations, we see
that unless 𝑘2

𝑥 + 𝑘2
𝑧 = 𝑘2 = 0, b has to be zero. Therefore, the only non-trivial mode that is permitted

when 𝜔 = 0 is a solution with uniform magnetic/velocity/pressure field. However, I postulate that, in
the presence of magnetic dissipation, this solution might be the one that supports the Hartmann layer
branch. The rest six roots are given by the following equation(

−𝜔2 +𝑉2
𝐴𝑘

2
𝑧

) [(
−𝜔2 + 𝛼2𝑘2

𝑥 +𝑉2
𝐴𝑘

2
) (

−𝜔2 + 𝛼2𝑘2
𝑧

)
− 𝛼4𝑘2

𝑥𝑘
2
𝑧

]
= 0(

𝜔2 −𝑉2
𝐴𝑘

2
𝑧

) (
𝜔4 − 𝜔2𝑘2

(
𝛼2 +𝑉2

𝐴

)
+ 𝛼2𝑉2

𝐴𝑘
2
𝑧𝑘

2
)
= 0

(140)

which gives the following roots

𝜔2
1,2 = 𝑉2

𝐴𝑘
2
𝑧

𝜔2
3,4 =

𝑘2

2
©­«
(
𝛼2 +𝑉2

𝐴

)
+

√︄(
𝛼2 +𝑉2

𝐴

)2 − 4𝛼2𝑉2
𝐴

𝑘2
𝑧

𝑘2
ª®¬ ,

𝜔2
5,6 =

𝑘2

2
©­«
(
𝛼2 +𝑉2

𝐴

)
−

√︄(
𝛼2 +𝑉2

𝐴

)2 − 4𝛼2𝑉2
𝐴

𝑘2
𝑧

𝑘2
ª®¬ .

(141)

Among these roots, 𝜔1,2 give the exact dispersion relation for the Alfvén wave; these thus give the
Alfvén waves as we know. The two roots correspond to the waves travelling downwind and upwind
the background field. The eigenmodes that correspond to these eigenvalues are given by (𝑢𝑦 , 𝑏𝑦) =

(1,−𝐵0𝑘𝑧/𝜔) = (1,−√𝜌0𝜇0𝑉𝐴𝑘𝑧/𝜔) = (1,∓√𝜌𝜇0), while the rest of the components are set to zero.
Therefore, the waves that correspond to the exact Alfvén wave dispersion relations comprise of velocity
and magnetic fields only polarized in the 𝑦 direction, perpendicular to both the wave vector k and the
background field B0. These are previously referred to as the horizontally polarized Alfvén wave (AH).

For the other four roots, known as the fast (𝜔3,4) and the slow (𝜔5,6) magneto-acoustic waves, I try
to expand the expression in small Alfvén Mach number limit. The Alfvén Mach number is defined as

38



𝑀𝐴 = 𝑉𝐴/𝛼. At 𝑀𝐴 ≪ 1, we have the fast magneto-acoustic wave

𝜔2
3,4 =

𝑘2

2
©­«𝛼2

(
1 + 𝑀2

𝐴

)
+ 𝛼2

√︄
1 +

(
2 − 4

𝑘2
𝑧

𝑘2

)
𝑀2
𝐴
+ 𝑀4

𝐴

ª®¬
≈ 𝑘2

2
𝛼2

(
2 +

(
2 − 2

𝑘2
𝑧

𝑘2

)
𝑀2
𝐴 +

1
2
𝑀4
𝐴 +𝑂 (𝑀4

𝐴)
)

= 𝛼2𝑘2

(
1 +

(
1 −

𝑘2
𝑧

𝑘2

)
𝑀2
𝐴 +𝑂

(
𝑀4
𝐴

))
,

(142)

and the slow magneto-acoustic wave

𝜔2
5,6 =

𝑘2

2
©­«𝛼2

(
1 + 𝑀2

𝐴

)
− 𝛼2

√︄
1 +

(
2 − 4

𝑘2
𝑧

𝑘2

)
𝑀2
𝐴
+ 𝑀4

𝐴

ª®¬
≈ 𝑘2

2
𝛼2

(
2
𝑘2
𝑧

𝑘2𝑀
2
𝐴 −

1
2
𝑀4
𝐴 +𝑂 (𝑀4

𝐴)
)

= 𝑉2
𝐴𝑘

2
𝑧

(
1 +𝑂

(
𝑀2
𝐴

))
.

(143)

It is hence shown that to the first order in 𝑀𝐴, the fast and slow magneto-acoustic waves share the
same dispersion relation with pure acoustic and pure Alfvén waves, respectively. Note that an implicit
assumption made here: 𝑘𝑧/𝑘 is bounded. Hereinafter I shall assume that 𝑘𝑧/𝑘 is around unity, in other
words 𝑘𝑥 not so high. Moreover, the eigenmodes correspond to these magneto-acoustic modes can be
encoded as

f =

©­­­­­­­­­«

𝑢𝑥
𝑢𝑦
𝑢𝑧
𝑝

𝑏𝑥
𝑏𝑦
𝑏𝑧

ª®®®®®®®®®¬
=

©­­­­­­­­­­­­«

− 𝜔
𝑉𝐴𝑘𝑥

0
𝑉2
𝐴
𝑘2+𝛼2𝑘2

𝑥

𝑉𝐴𝛼
2𝑘2

𝑥𝑘𝑧
𝜔 − 𝜔3

𝑉𝐴𝛼
2𝑘2

𝑥𝑘𝑧

−𝜌0𝑉𝐴
𝑘2

𝑘2
𝑥
+ 𝜌0
𝑉𝐴𝑘

2
𝑥
𝜔2

− 𝑘𝑧
𝑘𝑥

√
𝜌0𝜇0

0√
𝜌0𝜇0

ª®®®®®®®®®®®®¬
=

1
𝑘𝑥

©­­­­­­­­­­­­«

− 𝜔
𝑉𝐴

0
𝜔
𝑉𝐴

𝑉2
𝐴
𝑘2+𝛼2𝑘2

𝑥−𝜔2

𝛼2𝑘𝑥𝑘𝑧
𝜌0𝑉𝐴

𝑘𝑥

(
−𝑘2 + 𝜔2

𝑉2
𝐴

)
−√𝜌0𝜇0𝑘𝑧

0√
𝜌0𝜇0𝑘𝑥

ª®®®®®®®®®®®®¬
. (144)

For the fast magneto-acoustic mode, we plug in𝜔3,4 = ±𝛼𝑘±𝑀𝐴𝑉𝐴𝑘 (1−𝑘2
𝑧/𝑘2

𝑥)/2+𝑂
(
𝑀4
𝐴

)
to simplify

the expression

f3,4 =
1
𝑘𝑥

©­­­­­­­­­­«

∓ 𝛼
𝑉𝐴
𝑘 +𝑂

(
𝑀2
𝐴

)
0

∓ 𝑘𝑧
𝑘𝑥

𝛼
𝑉𝐴
𝑘 +𝑂

(
𝑀2
𝐴

)
𝜌0

𝛼2𝑘2

𝑉𝐴𝑘𝑥
+𝑂

(
𝑀2
𝐴

)
−√𝜌0𝜇0𝑘𝑧

0√
𝜌0𝜇0𝑘𝑥

ª®®®®®®®®®®¬
≈ 𝑘2

𝑘2
𝑥

©­­­­­­­­­­­«

∓𝑀−1
𝐴

𝑘𝑥
𝑘

0
∓𝑀−1

𝐴

𝑘𝑧
𝑘

𝑀−1
𝐴
𝜌0𝛼

−√𝜌0𝜇0
𝑘𝑧𝑘𝑥

𝑘2

0
√
𝜌0𝜇0

𝑘2
𝑥

𝑘2

ª®®®®®®®®®®®¬
. (145)

Compared to Alfvén waves, where the amplitude is equal between the velocity field and the magnetic
field, when 𝑀𝐴 ≪ 1, the amplitude of the fast magneto-acoustic waves are predominantly in the velocity
field. In fact, when we take 𝑀𝐴 ≪ 1 and keep up to the leading order of 𝑀𝐴 (𝑀−1

𝐴
) in each of the

components, we recover the purely acoustic wave, where magnetic effects are negligible:

f3,4 =
©­«
𝑢𝑥
𝑢𝑧
𝑝

ª®¬ ≈ 𝑘2

𝑘2
𝑥

𝑀−1
𝐴

©­­«
∓ 𝑘𝑥
𝑘

∓ 𝑘𝑧
𝑘

𝜌0𝛼

ª®®¬ . (146)
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Note that this is simply an eigenvector, and all leading prefactors can be discarded. We thus conclude
at low Alfvén Mach number limit, the fast magneto-acoustic modes simply degenerate into the ordinary
acoustic waves in non-electrically-conducting fluid.

4.5.2 Magneto-elastic waves

Similar to magneto-acoustic waves, elastic medium which supports both compressional and longitudinal
waves may also support waves coupling electromagnetic fields. These are termed magneto-elastic waves,
and has been studied in the 1950s to 1960s, interestingly, following the development of magnetohydrody-
namics. Much of this section has already been documented in e.g. Baños (1956), although the literature
omits many intermediate steps.

First, I state that for perfect insulator, there will be no interaction between electromagnetic fields
and velocity fields. Indeed, absence of electric currents removes the Lorentz force from the picture,
prohibiting any electromagnetic feedback to the mechanical waves. On the other hand, there will be no
induction in the insulator due to particle motion. It follows that all of the following derivations are based
on some finite 𝜎 > 0, 𝜂 < +∞, such that the displacement currents are neglected.

The governing equation for the elastic medium in uniform background field reads

𝜌
𝜕2U
𝜕𝑡2

= ∇ ·
(
𝝉 + 𝝉𝑀

)
= ∇ ·

(
𝜆(∇ · U)I + 2𝜇

(
∇U + ∇U𝑇

)
+ 1
𝜇0

BB − 𝐵2

2𝜇0
I
)
,

𝜕B
𝜕𝑡

= ∇ × (u × B) + 𝜂∇2B = ∇ ×
(
𝜕U
𝜕𝑡

)
+ 𝜂∇2B,

(147)

where 𝝉𝑀 is the Maxwell stress. We already applied the infinitesimal deformation approximation on
the velocity field. However, the Maxwell stress and the induction term remain to be linearized. Again,
decomposing the magnetic field B = B0+b, and taking the time derivative of the the momentum equation,
we arrive at the fully linearized equations of velocity and magnetic field

𝜕2u
𝜕𝑡2

=
𝜆

𝜌0
∇(∇ · u) + 𝜇

𝜌0

(
∇2u + ∇(∇ · u)

)
+ V𝐴 · ∇

𝜕b
𝜕𝑡

− ∇𝜕b
𝜕𝑡

· V𝐴,

=

(
𝛼2 − 𝛽2

)
∇(∇ · u) + 𝛽2∇2u + V𝐴 · ∇

𝜕b
𝜕𝑡

− ∇𝜕b
𝜕𝑡

· V𝐴

𝜕b
𝜕𝑡

= V𝐴 · ∇u − V𝐴∇ · u + 𝜂∇2b.

(148)

Note the same transformation b := b/√𝜌𝜇0 has already been applied. The magnetic field is oriented
in the 𝑧 direction, i.e. V𝐴 = 𝑉𝐴ẑ. Baños (1956) merged the entire Maxwell equations and momentum
equation into one vector equation, which can then be converted to three scalar equations by taking the
𝑧-component, the divergence, and the 𝑧-component of the curl. However, this approach requires tedious
and lengthy derivation beforehand to first come to the single vector equation, as well as yields high order
systems. I follow the same procedure as the magneto-acoustic wave, and formulate the equation as a 6×6
matrix. Note here the stress tensor has been explicit written out using the constitutive relation, which
removes the need to include the constitutive relation (counterpart of 𝜕𝑡 𝑝 = −𝛾𝑝0∇·u in magneto-acoustic
wave derivations) in the system. Using the plane wave ansatz,

−𝜔2u +
(
𝛼2 − 𝛽2

)
k (k · u) + 𝛽2𝑘2u + 𝜔k (V𝐴 · b) − 𝜔 (V𝐴 · k) b = 0

⇐⇒
[(
−𝜔2 + 𝛽2𝑘2

)
I +

(
𝛼2 − 𝛽2

)
kk

]
· u + 𝜔 [kV𝐴 − (k · V𝐴)I] · b = 0(

𝑖𝜔 + 𝜂𝑘2
)

b + 𝑖(V𝐴 · k)u − 𝑖V𝐴(k · u) = 0

⇐⇒ 𝑖 [(V𝐴 · k)I − V𝐴k] · u +
(
𝑖𝜔 + 𝜂𝑘2

)
I · b = 0

(149)
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which forms the matrix equation( (
−𝜔2 + 𝛽2𝑘2) I +

(
𝛼2 − 𝛽2) kk 𝜔 [kV𝐴 − (k · V𝐴)I]

(V𝐴 · k)I − V𝐴k
(
𝜔 − 𝑖𝜂𝑘2) I

) (
u
b

)
= 0.

This is still an eigenvalue problem, although since the system is not shaped as vector ODE, the corre-
sponding matrix is not equivalent to a regular matrix eigenvalue problem, but contains higher powers of
𝜔 on the diagonal, also 𝜔 in off-diagonal elements:

©­­­­­­­«

−𝜔2 + 𝛼2𝑘2
𝑥 + 𝛽2𝑘2

𝑧 0 (𝛼2 − 𝛽2)𝑘𝑥𝑘𝑧 −𝜔𝑘𝑧𝑉𝐴 0 𝜔𝑘𝑥𝑉𝐴
0 −𝜔2 + 𝛽2𝑘2 0 0 −𝜔𝑘𝑧𝑉𝐴 0

(𝛼2 − 𝛽2)𝑘𝑥𝑘𝑧 0 −𝜔2 + 𝛼2𝑘2
𝑧 + 𝛽2𝑘2

𝑥 0 0 0
𝑘𝑧𝑉𝐴 0 0 𝜔 − 𝑖𝜂𝑘2 0 0

0 𝑘𝑧𝑉𝐴 0 0 𝜔 − 𝑖𝜂𝑘2 0
−𝑘𝑥𝑉𝐴 0 0 0 0 𝜔 − 𝑖𝜂𝑘2

ª®®®®®®®¬

©­­­­­­­«

𝑢𝑥
𝑢𝑦
𝑢𝑧
𝑏𝑥
𝑏𝑦
𝑏𝑧

ª®®®®®®®¬
= 0.

(150)
If defining 𝑀𝛼 = 𝑉𝐴/𝛼 and 𝑀𝛽 = 𝑉𝐴/𝛽 as the Alfvén-P and Alfvén-S Mach numbers, respectively, the
matrix can be rewritten as

©­­­­­­­­­­«

𝑀−2
𝛼 𝑘2

𝑥 + 𝑀−2
𝛽
𝑘2
𝑧 − 𝜔2

𝑉2
𝐴

0 (𝑀−2
𝛼 − 𝑀−2

𝛽
)𝑘𝑥𝑘𝑧 − 𝜔

𝑉𝐴
𝑘𝑧 0 𝜔

𝑉𝐴
𝑘𝑥

0 𝑀−2
𝛽
𝑘2 − 𝜔2

𝑉2
𝐴

0 0 − 𝜔
𝑉𝐴
𝑘𝑧 0

(𝑀−2
𝛼 − 𝑀−2

𝛽
)𝑘𝑥𝑘𝑧 0 𝑀−2

𝛼 𝑘2
𝑧 + 𝑀−2

𝛽
𝑘2
𝑥 − 𝜔2

𝑉2
𝐴

0 0 0
𝑘𝑧𝑉𝐴 0 0 𝜔 − 𝑖𝜂𝑘2 0 0

0 𝑘𝑧𝑉𝐴 0 0 𝜔 − 𝑖𝜂𝑘2 0
−𝑘𝑥𝑉𝐴 0 0 0 0 𝜔 − 𝑖𝜂𝑘2

ª®®®®®®®®®®¬
(151)

Solving the temporal branch (i.e. 𝜔) is equivalent to solving a degree-9 polynomial. Fortunately, the
matrix is readily separated into two blocks: the variables 𝑢𝑦 and 𝑏𝑦 are naturally decoupled from the
rest of the system. This is similarly observed in magneto-acoustic waves, although there I didn’t exploit
this property. This simply splits the degree-9 polynomial into a cubic polynomial factor and a degree-6
polynomial factor. The cubic polynomial is given by

det A1 =

����−𝜔2 + 𝛽2𝑘2 −𝑘𝑧𝜔𝑉𝐴
𝑘𝑧𝑉𝐴 𝜔 − 𝑖𝜂𝑘2

���� = −
(
𝜔2 − 𝛽2𝑘2

) (
𝜔 − 𝑖𝜂𝑘2

)
+ 𝑘2

𝑧𝑉
2
𝐴𝜔 = 0

𝜔3 − 𝑖𝜂𝑘2𝜔2 −
(
𝛽2𝑘2 + 𝑘2

𝑧𝑉
2
𝐴

)
𝜔 + 𝑖𝜂𝛽2𝑘4 = 0

(152)

Using the Alfvén wavenumber as the characteristic length scale, the equation can be nondimensionalized(
𝜔

𝑘𝑉𝐴

)3
− 𝑖𝜖𝜂

(
𝜔

𝑘𝑉𝐴

)2
−

(
𝑀−2
𝛽 +

𝑘2
𝑧

𝑘2

) (
𝜔

𝑘𝑉𝐴

)
+ 𝑖𝜖𝜂𝑀−2

𝛽 = 0 (153)

where the wavenumber-dependent inverse Lundquist number is defined here as 𝜖𝜂 =
𝜂𝑘

𝑉𝐴
. At very low

Alfvén-S Mach number, 𝑀−2
𝛽

≫ 𝑘2
𝑧/𝑘2, the equation simplifies to a fully factorized form[(
𝜔

𝑘𝑉𝐴

)2
− 𝑀−2

𝛽

] (
𝜔

𝑘𝑉𝐴
− 𝑖𝜖𝜂

)
= 0. (154)

Among the three roots of this polynomial,

𝜔2
1,2 = 𝑘2𝑉2

𝐴𝑀
−2
𝛽 = 𝑘2𝛽2 (155)

correspond to pure mechanical shear wave at low Mach number limit, and

𝜔3 − 𝑖𝜂𝑘2 = 0 (156)
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corresponds to the decaying solution, with skin depth
√︁

2𝜂/𝜔 =
√︁

2/𝜇0𝜔𝜎. The two scenarios should also
be mainly mechanical (i.e. eigenvector has |𝑏 |/|𝑢 | ∼ 𝑂 (𝑀𝛽)) and electromagnetic (|𝑢 |/|𝑏 | ∼ 𝑂 (𝑀𝛽)),
respectively. [How to show this? Brutal force solution, while still possible for this matrix, will soon
be out of hand; how can I justify the accuracy of the solutions when making approximations on the
coefficients? Is there an algebraic "condition number"?]

The second factor polynomial is given by the rather dense matrix

det A2 = det
©­­­«
𝛼2𝑘2

𝑥 + 𝛽2𝑘2
𝑧 − 𝜔2 (𝛼2 − 𝛽2)𝑘𝑥𝑘𝑧 −𝜔𝑘𝑧𝑉𝐴 𝜔𝑘𝑥𝑉𝐴

(𝛼2 − 𝛽2)𝑘𝑥𝑘𝑧 𝛼2𝑘2
𝑧 + 𝛽2𝑘2

𝑥 − 𝜔2 0 0
𝑘𝑧𝑉𝐴 0 𝜔 − 𝑖𝜂𝑘2 0
−𝑘𝑥𝑉𝐴 0 0 𝜔 − 𝑖𝜂𝑘2

ª®®®¬ . (157)

A few comments can be made on the submatrix above. First, the 𝑧-component of the momentum equation
(second row) does not involve magnetic field. This can be easily justified in that there is no Lorentz force
aligned with the background magnetic field in the linearized form. Second, similarly, the 𝑧-velocity,
since it is aligned with the background field, does not contribute to the induction term (see third and
fourth row). Expanding the determinant (hint: expand by the last column, and then expand by the last
columns of the resulting submatrices),

det A = (𝜔𝑘𝑥𝑉𝐴) (𝜔 − 𝑖𝜂𝑘2) (𝑘𝑥𝑉𝐴)
(
𝛼2𝑘2

𝑧 + 𝛽2𝑘2
𝑥 − 𝜔2

)
+ (𝜔 − 𝑖𝜂𝑘2)2(𝜔2 − 𝛼2𝑘2) (𝜔2 − 𝛽2𝑘2)

+ (𝜔 − 𝑖𝜂𝑘2) (𝜔𝑘𝑧𝑉𝐴) (𝑘𝑧𝑉𝐴)
(
𝛼2𝑘2

𝑧 + 𝛽2𝑘2
𝑥 − 𝜔2

)
=

(
𝜔 − 𝑖𝜂𝑘2

) [
𝜔𝑘2𝑉2

𝐴

(
𝛼2𝑘2

𝑧 + 𝛽2𝑘2
𝑥 − 𝜔2

)
+

(
𝜔 − 𝑖𝜂𝑘2

) (
𝜔2 − 𝛼2𝑘2

) (
𝜔2 − 𝛽2𝑘2

)]
=

(
𝜔 − 𝑖𝜂𝑘2

) [
𝜔5 − 𝑖𝜂𝑘2𝜔4 −

(
𝑘2𝑉2

𝐴 + (𝛼2 + 𝛽2)𝑘2
)
𝜔3

+ 𝑖𝜂𝑘4(𝛼2 + 𝛽2)𝜔2 +
(
𝛼2𝛽2𝑘4 +

(
𝛼2𝑘2

𝑧 + 𝛽2𝑘2
𝑥

)
𝑘2𝑉2

𝐴

)
𝜔 − 𝑖𝜂𝛼2𝛽2𝑘6

]
=

(
𝜔 − 𝑖𝜂𝑘2

) [
𝜔4

(
𝜔 − 𝑖𝜂𝑘2

)
−

(
𝛼2 + 𝛽2 +𝑉2

𝐴

)
𝑘2𝜔3

+ 𝑖𝜂𝑘4
(
𝛼2 + 𝛽2

)
𝜔2 +

(
𝛼2𝛽2 + 𝛼2𝑉2

𝐴

𝑘2
𝑧

𝑘2 + 𝛽2𝑉2
𝐴

𝑘2
𝑥

𝑘2

)
𝑘4𝜔 − 𝑖𝜂𝛼2𝛽2𝑘6

]
.

(158)

The roots of the degree-6 polynomial give the temporal branch of the magneto-elastic normal modes that
couple the fields in the plane formed by k and B0. To our delight, we find that at least one solution can
be exactly extracted:

𝜔 = 𝑖𝜂𝑘2

which seems to correspond to the decaying magnetic field. However, substituting the relation back into
the matrix, we find the eigenvector (normal mode) is indicated by 𝑢𝑥 = 𝑢𝑧 = 0, −𝑘𝑧𝑏𝑥 + 𝑘𝑥𝑏𝑧 = 0.
Augmenting the latter with solenoidal condition 𝑘𝑥𝑏𝑥 + 𝑘𝑧𝑏𝑧 = 0, we again conclude the only condition
for nontrivial solution is 𝑘2

𝑥 + 𝑘2
𝑧 = 𝑘

2 = 0. This in turn implies 𝜔 = 0.
The rest of the roots are unfortunately buried in the un-factorizable quintic equation

𝜔5 − 𝑖𝜂𝑘2𝜔4 −
(
𝑘2𝑉2

𝐴 + (𝛼2 + 𝛽2)𝑘2
)
𝜔3 + 𝑖𝜂𝑘4(𝛼2 + 𝛽2)𝜔2

+
(
𝛼2𝛽2𝑘4 +

(
𝛼2𝑘2

𝑧 + 𝛽2𝑘2
𝑥

)
𝑘2𝑉2

𝐴

)
𝜔 − 𝑖𝜂𝛼2𝛽2𝑘6 = 0

where a universal radical expression of roots is absent. Nevertheless, I shall discuss two approaches to
simplify the problem. If non-dimensionalizing the equation using compressional wave wave length 𝛽/𝛼
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as the characteristic wavelength 1/𝑘 , it can be rewritten as( 𝜔
𝑘𝛼

)5
− 𝑖 𝜂𝑘

𝛼

( 𝜔
𝑘𝛼

)4
−

(
1 +

𝑉2
𝐴

𝛼2 + 𝛽2

𝛼2

) ( 𝜔
𝑘𝛼

)3
+ 𝑖 𝜂𝑘

𝛼

(
1 + 𝛽2

𝛼2

) ( 𝜔
𝑘𝛼

)2

+
(
𝛽2

𝛼2 +
𝑉2
𝐴

𝛼2

(
𝑘2
𝑧

𝑘2 + 𝛽2

𝛼2
𝑘2
𝑥

𝑘2

))
𝜔

𝑘𝛼
− 𝑖 𝜂𝑘

𝛼

𝛽2

𝛼2 = 0,( 𝜔
𝑘𝛼

)5
− 𝑖𝜖𝜂𝑀𝛼

( 𝜔
𝑘𝛼

)4
−

(
1 + 𝑀2

𝛼 + Γ−2
) ( 𝜔
𝑘𝛼

)3
+ 𝑖𝜖𝜂𝑀𝛼

(
1 + Γ−2

) ( 𝜔
𝑘𝛼

)2

+
(
Γ−2 + 𝑀2

𝛼

(
𝑘2
𝑧

𝑘2 + Γ−2 𝑘
2
𝑥

𝑘2

))
𝜔

𝑘𝛼
− 𝑖𝜖𝜂𝑀𝛼Γ

−2 = 0,

(159)

where I introduced the P- to S-wave velocity ratio Γ = 𝛼/𝛽. For a Poisson solid (𝜆 = 𝜇), this ratio is
Γ =

√
3 ≈ 1.732 ∼ 1. Most typical solids, including virtually all of Earth’s mantle, are at the same order

of Γ ∼ 1. We are ready to introduce simplifications. Just as in magneto-acoustic waves, the system with
all three ingredients - background field, magnetic diffusion and elasticity - is not analytically tractable.
However, removing any one of these would yield the system tractable. At very low Alfvén-P Mach
number, the 𝑀2

𝛼 terms in the cubic and linear coefficients can be neglected compared to the other order
unity term. In this case, the equation simplifies into a form where the background magnetic field is
subordinate:( 𝜔

𝑘𝛼

)5
− 𝑖𝜖𝜂𝑀𝛼

( 𝜔
𝑘𝛼

)4
−

(
1 + Γ−2

) ( 𝜔
𝑘𝛼

)3
+ 𝑖𝜖𝜂𝑀𝛼

(
1 + Γ−2

) ( 𝜔
𝑘𝛼

)2
+ Γ−2 𝜔

𝑘𝛼
− 𝑖𝜖𝜂𝑀𝛼Γ

−2 = 0,

𝜔5 − 𝑖𝜂𝑘2𝜔4 −
(
𝛼2 + 𝛽2

)
𝑘2𝜔3 + 𝑖𝜂𝑘4

(
𝛼2 + 𝛽2

)
𝜔2 + 𝛼2𝛽2𝑘4𝜔 − 𝑖𝜂𝛼2𝛽2𝑘6 = 0,(

𝜔 − 𝑖𝜂𝑘2
) (
𝜔2 − 𝛼2𝑘2

) (
𝜔2 − 𝛽2𝑘2

)
= 0

(160)
reverting back to the scenario with no background field. The three solutions are: pure decaying (temporal
branch behaviour) / evanescent (spatial branch behaviour) magnetic field governed by 𝜔 = 𝑖𝜂𝑘2, pure
elastic compressional wave 𝜔 = ±𝛼𝑘 , and pure elastic shear wave 𝜔 = ±𝛽𝑘 . The latter two pure elastic
waves are also given as in the "weak-field" limit discussed in Baños (1956).
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A Reflection and transmission at fluid interface

The behaviour of Alfvén waves at fluid-fluid intrfaces is more complicated since the Alfvén wave
solution needs to be constructed simultaneously in both sides of the interface. This problem has,
however, been studied by Ferraro (1954) in the dawn of MHD, albeit for ideal (diffusionless) case only.
Although his derivations and results are self-consistent and seem reasonable, it seems peculiar to use
electromagnetic continuity condition when the media are assumed to be ideal/diffusionless/infinitely
conductive. Nevertheless, this provides a very comprehensive step as the orientations are fully taken into
account, and is hence documented here.

A.1 Interface of two ideal fluids

This scenario is treated in Ferraro (1954). The media on both sides of the interface are considered ideal,
i.e. free of both viscous and magnetic diffusion.

A.1.1 Problem setup

We consider the incidence of Alfvén wave at an oblique angle with the fluid-fluid interface in uniform
B0. The two media have different densities, denoted as 𝜌1 and 𝜌2, which creates the discontinuity. The
setup of geometry and coordinate systems is given in the box that follows.

Orientations in the system

We first recall the treatment of seismic wave reflection and transmission in isotropic medium. There are three orientations
involved in the system:

1. orientation of the interface (described by plane normal n̂),

2. the wave vector of the wave k, and

3. the polarization of the wave A0.

After defining the plane of incidence using n̂ and k and splitting the wavefield into 𝑃, 𝑆𝑉 and 𝑆𝐻 polarizations, the
picture is fixed and the problem is relatively simple to solve. The only variables are the incidence, reflection and refraction
angles, whose relations can be derived solely in terms of medium properties. This is however not the case for Alfvén
waves. Due to the anisotropy introduced by the B0, there is a fourth distinctive orientation in the system

4. orientation of the background magnetic field B0.

This is not at all a trivial orientation, as eq.(28) shows this is the direction in which energy and information propagates.
One can already anticipate that medium properties will not be the only thing present in the laws of reflection and refraction.
Furthermore, since we have one more direction in the system, it is now ambiguous how to define the coordinate system.
In this article I follow Ferraro’s treatment and define three coordinate systems as follows

• Axis ẑ is defined to be the normal of the plane, forming an acute angle with the background field, i.e. ẑ = n̂;

• Axis x̂ is so defined that B0 is in the plane 𝑂𝑥𝑧 and forms an acute angle with x̂; ŷ follows so that 𝑂𝑥𝑦𝑧 forms the
right-hand system;

• Axis ẑ′ is defined as B̂0; 𝑂𝑥′𝑦𝑧′ system is obtained by rotating 𝑂𝑥𝑦𝑧 around ŷ;

• Axis x̂′′ is so defined that k is in the plane 𝑂𝑥′′𝑧 and forms an acute angle with x̂′′; ŷ′′ follows so that 𝑂𝑥′′𝑦′′𝑧
forms the right-hand system.

The three coordinate systems are

1. 𝑂𝑥𝑦𝑧, where ẑ = n̂, and B0 defines 𝑂𝑥𝑧;

2. 𝑂𝑥′𝑦𝑧′, where ẑ′ = B̂0, and the system shares the same ŷ with 𝑂𝑥𝑦𝑧;

3. 𝑂𝑥′′𝑦′′𝑧, where ẑ = n̂, and k defines 𝑂𝑥′′𝑧′′.

Unless otherwise specified, the three-tuple (𝑎, 𝑏, 𝑐) represents three components in 𝑂𝑥𝑦𝑧 coordinates. Introducing angle
𝛽 =< B0, ẑ > so that B̂0 = (sin 𝛽, 0, cos 𝛽), angles 𝜃, 𝜙 so that k = (sin 𝜃 cos 𝜙, sin 𝜃 sin 𝜙, cos 𝜃), the three coordinate
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systems are related via

r′ = ©­«
𝑥′

𝑦

𝑧′
ª®¬ =

©­«
cos 𝛽 0 − sin 𝛽

0 1 0
sin 𝛽 0 cos 𝛽

ª®¬ ©­«
𝑥

𝑦

𝑧

ª®¬ = Q′r, r′′ = ©­«
𝑥′′

𝑦′′

𝑧

ª®¬ =
©­«

cos 𝜙 sin 𝜙 0
− sin 𝜙 cos 𝜙 0

0 0 1

ª®¬ ©­«
𝑥

𝑦

𝑧

ª®¬ = Q′′r (161)

Figure 8: Setup of the Alfvén reflection problem at the fluid-fluid interface.

Boundary conditions (BCs) at the interface are the link between the solutions within two domains
separated by the interface. For the inviscid medium, it is known that one cannot pose continuity of
plane-parallel velocity. The only possible kinematic condition is the continuity of plane-normal velocity,
which holds as long as there are no mixing or cavity forming between the two fluids

(u · n̂) |𝑧=0− = (u · n̂) |𝑧=0+ . (162)

In addition to the kinematic BC, Ferraro (1954) used the continuity of the magnetic field and the electric
field for the electromagnetic boundary condition.

E|𝑧=0− = u × (B0 + b) |𝑧=0− = u × (B0 + b) |𝑧=0+ = E|𝑧=0+ , b|𝑧=0− = b|𝑧=0+ (163)

[Compared to the insulating limit (at least we know vacuum is indeed an insulator), the ideal case seems
to be harder to imagine, and it is dubious whether an ideal system would require the continuity of these
fields. For instance, is an infinitely thin current sheet permitted in the infinitely conductive system? If
that is the case, then magnetic field can afford discontinuity. However, continuity conditions on both
magnetic and electric fields indeed close the equations appropriately in the end.] The continuity of
electric field can be further manipulated by taking the cross product with n̂

n̂ × (u × (B0 + b)) |𝑧=0− = n̂ × (u × (B0 + b)) |𝑧=0+

(n̂ · (B0 + b)) (u|0+ − u|0− ) = (B0 + b) [(u · n̂) |0+ − (u · n̂) |0− ] .
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Due to the continuity of normal velocity, and considering B0 · n̂ ≠ 0 (otherwise there is no Alfvén
wave propagating towards the interface), we see that this amounts to requiring the velocity field to be
continuous in all components across the boundary. The final boundary conditions are given by

u|𝑧=0− = u|𝑧=0+ , b|𝑧=0− = b|𝑧=0+ . (164)

We seek solutions in the form of

b =

{
b0 exp{𝑖(𝜔𝑡 − k0 · r)} + b𝑅 exp{𝑖(𝜔𝑡 − k𝑅 · r)}, 𝑧 < 0

b𝑇 exp{𝑖(𝜔𝑡 − k𝑇 · r)}, 𝑧 > 0
(165)

that satisfy the Alfvén wave equation and the aforementioned boundary conditions. 𝑅 and 𝑇 are super-
scripts for reflected and transmitted components, respectively. There are multiple ways to parameterize
the wave vectors. For instance, Ferraro (1954) parameterized the wave vector by 𝑘 and 𝜔0, which are
quantities proportional to the projection of the wave vector onto x̂′ and ŷ axes, respectively. Although
the parameterization allows effortless incorporation of the dispersion relation for Alfvén waves, thus
gives simple expressions for waves in 𝑂𝑥′𝑦𝑧′ frame, the derivation of reflection and refraction laws is
more tedious. In this article, however, I simply parameterize the wave vectors by the angles 𝜃 and 𝜙 (see
remark box above). The wave vectors are hence given by

k0 = 𝑘0 (sin 𝜃0 cos 𝜙0, sin 𝜃0 sin 𝜙0, cos 𝜃0)
k𝑅 = 𝑘𝑅 (sin 𝜃𝑅 cos 𝜙𝑅, sin 𝜃𝑅 sin 𝜙𝑅, cos 𝜃𝑅)
k𝑇 = 𝑘𝑇 (sin 𝜃𝑇 cos 𝜙𝑇 , sin 𝜃𝑇 sin 𝜙𝑇 , cos 𝜃𝑇 ) .

(166)

The quantities 𝑘0, 𝑘𝑅 and 𝑘𝑇 are magnitudes, and are hence positive; 𝜃 is defined in [0, 𝜋], and
𝜙 ∈ [0, 2𝜋). Note 𝜃 is defined as < k, ẑ >, and will be > 𝜋/2 for downgoing waves (i.e. phase velocity
going to negative 𝑧 direction).

A.1.2 Solutions for reflected and transmitted waves, laws of reflection and refraction

The parameterization and plane wave ansatz given above do not respect the Alfvén wave equation, nor
the boundary condition. We first enforce the dispersion relation on the plane wave ansatz,

k0 · B̂0 =
𝜔

𝑉1
, k𝑅 · B̂0 = − 𝜔

𝑉1
, k𝑇 · B̂0 =

𝜔

𝑉2
,

where 𝑉1 = 𝐵0/
√
𝜌1𝜇0 and 𝑉2 = 𝐵0/

√
𝜌2𝜇0. In this process we have already made the assumption that

the incoming and transmitted wave propagates downwind of the background field (k · B̂0 > 0), while
the reflected wave propagates upwind. This is justified by the fact that the incoming wave brings energy
to the interface, while the reflected and transmitted waves bring energy away. Since [presumably] the
energy propagates in the group velocity, it travels either in or opposite the background field. And since
the background field is in the same direction as n̂, the downwind direction in medium 2 and upwind
direction in medium 1 bring energy away from the interface.

Using this constraint, and noting B̂0 = (sin 𝛽, 0, cos 𝛽), the magnitudes of the wave vectors can be
solved as a function of 𝜃 and 𝜙,

𝑘0 =
𝜔

𝑉1
(sin 𝛽 sin 𝜃0 cos 𝜙0 + cos 𝛽 cos 𝜃0)−1

𝑘𝑅 = − 𝜔
𝑉1

(sin 𝛽 sin 𝜃𝑅 cos 𝜙𝑅 + cos 𝛽 cos 𝜃𝑅)−1

𝑘𝑇 =
𝜔

𝑉2
(sin 𝛽 sin 𝜃𝑇 cos 𝜙𝑇 + cos 𝛽 cos 𝜃𝑇 )−1

(167)

These solutions guarantee the plane wave solutions satisfy the dispersion relation, and hence satisfy the
Alfvén wave equation. Next, we enforce the kinematic and electromagnetic boundary conditions at 𝑧 = 0.
This yields

b0 exp{𝑖(𝜔𝑡 − k0
𝐻 · r) + b𝑅 exp{𝑖(𝜔𝑡 − k𝑅𝐻 · r) = b𝑇 exp{𝑖(𝜔𝑡 − k𝑇𝐻 · r)},
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b0
√
𝜌1

exp{𝑖(𝜔𝑡 − k0
𝐻 · r) − b𝑅

√
𝜌1

exp{𝑖(𝜔𝑡 − k𝑅𝐻 · r) = b𝑇
√
𝜌2

exp{𝑖(𝜔𝑡 − k𝑇𝐻 · r)},

where k𝐻 are the horizontal components of the wave vectors. The negative sign in the second equation
comes due to the fact that waves propagating downwind and upwind have different phase differences
between b and u. These equations hold if and only if (i) the phases of the three wave match each other
on the 𝑂𝑥𝑦 plane, which gives the phase equation

k0
𝐻 = k𝑅𝐻 = k𝑇𝐻 (168)

and (ii) once the phases match, the amplitudes need to satisfy

b0 + b𝑅 = b𝑇 ,
1

√
𝜌1

(
b0 − b𝑅

)
=

1
√
𝜌2

b𝑇 .
(169)

The amplitude equations simply yield the solutions

b𝑅 =

√
𝜌2 −

√
𝜌1√

𝜌2 +
√
𝜌1

b0 =
𝑉1 −𝑉2

𝑉1 +𝑉2
b0, b𝑇 =

2√𝜌2√
𝜌2 +

√
𝜌1

b0 =
2𝑉1

𝑉1 +𝑉2
b0, (170)

which give the reflection and refraction coefficients. These coefficients are independent of incidence
angle, orientation of the background field, etc, but is only dependent on the media properties, which is
different from seismic waves and Fresnel equations in optics. The phase equations, however, yields more
complicated results than Snell’s law

{
𝑘0 sin 𝜃0 cos 𝜙0 = 𝑘𝑅 sin 𝜃𝑅 cos 𝜙𝑅,

𝑘0 sin 𝜃0 sin 𝜙0 = 𝑘𝑅 sin 𝜃𝑅 sin 𝜙𝑅,


𝑘0

𝑉1
sin 𝜃0 cos 𝜙0 =

𝑘𝑇

𝑉2
sin 𝜃𝑇 cos 𝜙𝑇 ,

𝑘0

𝑉1
sin 𝜃0 sin 𝜙0 =

𝑘𝑇

𝑉2
sin 𝜃𝑇 sin 𝜙𝑇 .

(171)

Taking the ratio between the two equations within each bracket, we arrive at

𝜙0 = 𝜙𝑅 = 𝜙𝑇 . (172)

The line of logic is as follows. Taking the ratio yields tan 𝜙0 = tan 𝜙𝑅 = tan 𝜙𝑇 , which contains an 𝑛𝜋
ambiguity. However, since 𝑘 > 0, sin 𝜃 > 0, for eq.(171) to hold it is further required that the cosines
and sines of these angles have matching signs. Therefore it is only possible when all of these azimuths
are the same. This is the coplanar condition for the reflection and transmission of Alfvén waves, and
states that the incoming, reflected and refracted waves are propagating (in the sense of k or c𝑝) in the
same plane. Hereinafter I shall drop the subscript of 𝜙 since this quantity is shared by all waves. Using
eq.(172) to further reduce the system, we arrive at

sin 𝜃0

sin 𝜃𝑅
= − sin 𝛽 sin 𝜃0 cos 𝜙 + cos 𝛽 cos 𝜃0

sin 𝛽 sin 𝜃𝑅 cos 𝜙 + cos 𝛽 cos 𝜃𝑅
,

sin 𝜃0

sin 𝜃𝑇
=
𝑉1

𝑉2

sin 𝛽 sin 𝜃0 cos 𝜙 + cos 𝛽 cos 𝜃0

sin 𝛽 sin 𝜃𝑇 cos 𝜙 + cos 𝛽 cos 𝜃𝑇
.

These two equations allow us to derive the expressions for 𝜃𝑅 and 𝜃𝑇 , as a function of 𝛽, 𝜃0 and 𝜙.

cot 𝜃𝑅 + cot 𝜃0 = −2 tan 𝛽 cos 𝜙, (173)

which is the law of reflection, and

cot 𝜃𝑇 − 𝑉1

𝑉2
cot 𝜃0 =

(
𝑉1

𝑉2
− 1

)
tan 𝛽 cos 𝜙, (174)
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which is the law of refraction. The reflection and transmission coefficients (eq.170), the coplanar
condition (eq.172) and the laws of reflection and refraction (eq.173-174) give all the information of the
system. The plane wave solution, which originally has the form

b = b0 exp
{
𝑖𝜔

(
𝑡 − 1

𝑉1

sin 𝜃0 cos 𝜙𝑥 + sin 𝜃0 sin 𝜙𝑦 + cos 𝜃0𝑧

sin 𝛽 sin 𝜃0 cos 𝜙 + cos 𝛽 cos 𝜃0

)}
+ b𝑅 exp

{
𝑖𝜔

(
𝑡 + 1

𝑉1

sin 𝜃𝑅 cos 𝜙𝑥 + sin 𝜃𝑅 sin 𝜙𝑦 + cos 𝜃𝑅𝑧
sin 𝛽 sin 𝜃𝑅 cos 𝜙 + cos 𝛽 cos 𝜃𝑅

)}
, 𝑧 < 0

b = b𝑇 exp
{
𝑖𝜔

(
𝑡 − 1

𝑉2

sin 𝜃𝑇 cos 𝜙𝑥 + sin 𝜃𝑇 sin 𝜙𝑦 + cos 𝜃𝑇 𝑧
sin 𝛽 sin 𝜃𝑇 cos 𝜙 + cos 𝛽 cos 𝜃𝑇

)}
, 𝑧 > 0

(175)

will then become the following, after substituting the conditions,

b = b0 exp
{
𝑖𝜔

(
𝑡 − 1

𝑉1

sin 𝜃0 cos 𝜙𝑥 + sin 𝜃0 sin 𝜙𝑦 + cos 𝜃0𝑧

sin 𝛽 sin 𝜃0 cos 𝜙 + cos 𝛽 cos 𝜃0

)}
+ 𝑉1 −𝑉2

𝑉1 +𝑉2
b0 exp

{
𝑖𝜔

(
𝑡 − 1

𝑉1

sin 𝜃0 cos 𝜙𝑥 + sin 𝜃0 sin 𝜙𝑦 + sin 𝜃0 cot 𝜃𝑅𝑧
sin 𝛽 sin 𝜃0 cos 𝜙 + cos 𝛽 cos 𝜃0

)}
, 𝑧 < 0

b =
2𝑉1

𝑉1 +𝑉2
b0 exp

{
𝑖𝜔

(
𝑡 − 1

𝑉1

sin 𝜃0 cos 𝜙𝑥 + sin 𝜃0 sin 𝜙𝑦 + sin 𝜃0 cot 𝜃𝑇 𝑧
sin 𝛽 sin 𝜃0 cos 𝜙 + cos 𝛽 cos 𝜃0

)}
, 𝑧 > 0.

(176)

As a side remark, one can easily shown this is equivalent to the plane wave solution in Ferraro 1954,
which uses a different parameterization. The conversion is given in the following box.

Conversion to component parameterization

If one parameterizes the incoming wave as

b0 exp
{
𝑖

(
𝜔𝑡 − 𝜔1𝑥

′ + 𝜔2𝑦 + 𝜔𝑧′
𝑉1

)}
= b0 exp

{
𝑖𝜔

(
𝑡 −

( 𝜔1
𝜔 cos 𝛽 + sin 𝛽)𝑥 + 𝜔2

𝜔 𝑦 + (− 𝜔1
𝜔 sin 𝛽 + cos 𝛽)𝑧

𝑉1

)}
and introduces the horizontal frequency

𝜔𝐻 =

√︃
(𝜔1 cos 𝛽 + 𝜔 sin 𝛽)2 + 𝜔2

2 =
𝜔 sin 𝜃0

sin 𝛽 sin 𝜃0 cos 𝜙 + cos 𝛽 cos 𝜃0
,

one arrives at the expressions for the angles,

cos 𝜙 =
1
𝜔𝐻

(𝜔1 cos 𝛽 + 𝜔 sin 𝛽) , cot 𝜃0 =
1
𝜔𝐻

(−𝜔1 sin 𝛽 + 𝜔 cos 𝛽)

cos 𝜃𝑅 = − 1
𝜔𝐻

(
𝜔1 sin 𝛽 + 𝜔 1 + sin2 𝛽

cos 𝛽

)
, cos 𝜃𝑇 =

1
𝜔𝐻

(
−𝜔1 sin 𝛽 +

(
𝑉1
𝑉2

− sin2 𝛽

)
𝜔

cos 𝛽

)
Using these expressions and the laws of reflection and refraction, eq.(176) can be converted into the form

b = b0 exp
{
𝑖𝜔𝑡 − 𝑖

𝑉1

[
(𝜔1 cos 𝛽 + 𝜔 sin 𝛽)𝑥 + 𝜔2𝑦 + (−𝜔1 sin 𝛽 + 𝜔 cos 𝛽)𝑧

]}
+ b𝑅 exp

{
𝑖𝜔𝑡 − 𝑖

𝑉1

[
(𝜔1 cos 𝛽 + 𝜔 sin 𝛽)𝑥 + 𝜔2𝑦 − (𝜔1 sin 𝛽 + 𝜔 1 + sin2 𝛽

cos 𝛽
)𝑧

]}
, 𝑧 < 0

b = b𝑇 exp
{
𝑖𝜔𝑡 − 𝑖

𝑉1

[
(𝜔1 cos 𝛽 + 𝜔 sin 𝛽)𝑥 + 𝜔2𝑦 +

(
−𝜔1 sin 𝛽 +

(
𝑉1
𝑉2

− sin2 𝛽

)
𝜔

cos 𝛽

)
𝑧

]}
, 𝑧 > 0.

(177)

This gives the exact same answer as Ferraro (1954).

A.1.3 Discussions on reflections and refractions

Let us recall the law of reflection (173) and the law of refraction (174). Except for the media properties,
both laws are related to the (orientation of) background field via and only via the quantity

tan 𝛽 cos 𝜙.
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This is not just some random combination of the angles. Instead, let us recall the unit vectors of the
background field and the axes in the frame of incidence

B̂0 = (sin 𝛽, 0, cos 𝛽), x̂′′ = (cos 𝜙, sin 𝜙, 0), ŷ′′ = (sin 𝜙,− cos 𝜙, 0)

we have the identity

tan 𝛽 cos 𝜙 =
sin 𝛽 cos 𝜙

cos 𝛽
=

cos < B̂0, x̂′′ >
cos < B̂0, ẑ >

. (178)

Therefore, this quantity is nothing but the ratio between two cosines of the angles formed by the
background field with the rotated axis 𝑂𝑥′′𝑦′′𝑧. If this is still not straightforward enough, we can
consider the projection of B0 onto the plane of incidence. Note that the plane normal of the plane of
incidence is ŷ′′, the projection onto the plane of incidence can be given by

B̂∥
0 = B̂0 − (B̂0 · ŷ)ŷ = sin 𝛽x̂ + cos 𝛽ẑ − sin 𝛽 sin 𝜙(sin 𝜙x̂ − cos 𝜙ŷ)
= sin 𝛽 cos2 𝜙x̂ + sin 𝛽 sin 𝜙 cos 𝜙ŷ + cos 𝛽ẑ
= sin 𝛽 cos2 𝜙(cos 𝜙x̂′′ − sin 𝜙ŷ′′) + sin 𝛽 sin 𝜙 cos 𝜙(sin 𝜙x̂′′ + cos 𝜙ŷ′′) + cos 𝛽ẑ
= sin 𝛽 cos 𝜙x̂′′ + cos 𝛽ẑ

(179)

Therefore the quantity can be written as

tan 𝛽 cos 𝜙 = cot⟨B̂∥
0 , x̂

′′⟩ (180)

meaning this quantity is just the cotangent of the angle between the projected background field with the
rotated x̂′′ axis, or the tangent of the angle with the interface normal (with a variable sign). The value
would be negative when the projection of the background field on the plane of incidence falls in the
second quadrant of the 𝑂𝑥′′𝑧 plane. An easy way to achieve this is to have incidence wave coming from
the other side, i.e. 𝜙 = 𝜋, but keep the incidence relatively oblique so that the incidence wave still travels
downwind. Hereinafter I shall denote 𝛼 = ⟨B∥

0 , x̂
′′⟩.

The fact that the reflection and refraction laws only depend on this geometrical parameter greatly
simplifies the geometrical setting; in other words, complicated as the multiple orientations seem, the only
thing that matters is the projection of the background field in the plane of incidence. The component of
B0 normal to the plane of incidence is irrelevant.

Both laws simplify significantly when the quantity is zero (Ferraro 1954). This corresponds to the
scenario where the projection of background field on the plane of incidence is parallel to the interface
normal. In particular, this happens when B̂0 is normal to the interface. The simplified laws in these
scenarios are given by

cot 𝜃𝑅 = − cot 𝜃0 =⇒ 𝜃𝑅 = 𝜋 − 𝜃0,

cot 𝜃𝑇 =
𝑉1

𝑉2
cot 𝜃0 =⇒ tan 𝜃𝑇

𝑉2
=

tan 𝜃0

𝑉1

(181)

so that the reflection angle is the same as the incidence angle (the 𝜋 − 𝜃0 just means it forms obtuse angle
with the positive ẑ axis), and the refraction obeys a "Snell-like" law.

Finally, I comment on the criticality of the reflection and refraction angles. This is an essential and
informative part, where we will see some counterintuitive results, and what separation of phase and
group velocities can produce. For reflection,

cot 𝜃𝑅 = − cot 𝜃0 − 2 tan 𝛽 cos 𝜙 = − cot 𝜃0 − 2 cot𝛼

I shall first assume that the incidence wave vector is in the same quadrant as B̂∥
0 , so that 𝜃0 ∈ (0, 𝜋/2)

and 𝜙 ∈ (−𝜋/2, 𝜋/2). Although not explicitly stated, this is certainly an implicit assumption made when
Ferraro discusses about the extrema of of reflection and refraction angles. In this case, the quantity
cot 𝜃𝑅 is guaranteed to be negative, and the reflection angle is guaranteed to be in the quadrant (𝜋/2, 𝜋).
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As 𝜃0 goes from 0 (vertically downwards) to 𝜋/2 (easily verified that when 𝜙 ∈ (−𝜋/2, 𝜋/2) all 𝜃0 in the
first quadrant are valid incidence angles), 𝜃𝑅 goes from 𝜋 (vertically downwards) to some critical angle

𝜃𝑅,inf = 𝜋 − arccot(2 tan 𝛽 cos 𝜙) = 𝜋 − arccot (2 cot𝛼) = 𝜋 − arctan
(
1
2

tan𝛼
)

(182)

Therefore when 𝜙 is fixed, the phase propagation direction of the reflection cannot be arbitrarily close to
the interface. For refraction, the situation is slightly more complicated, as

cot 𝜃𝑇 =
𝑉1

𝑉2
cot 𝜃0 +

(
𝑉1

𝑉2
− 1

)
tan 𝛽 cos 𝜙 =

𝑉1

𝑉2
cot 𝜃0 +

(
𝑉1

𝑉2
− 1

)
cot𝛼

contains a coefficient with undetermined sign 𝑉1/𝑉2 − 1. If the wave impinges on a denser medium,
𝜌2 > 𝜌1 so 𝑉2 < 𝑉1, the coefficient is positive, and 𝜃𝑇 is guaranteed to fall in quadrant (0, 𝜋/2). As 𝜃0
increases from 0 to 𝜋/2, the refraction angle also monotonically increases from 0 to a limiting angle

𝜃𝑇,sup = arccot
(
𝑉1 −𝑉2

𝑉2
tan 𝛽 cos 𝜙

)
= arccot

(
𝑉1 −𝑉2

𝑉2
cot𝛼

)
= arctan

(
𝑉2

𝑉1 −𝑉2
tan𝛼

)
(183)

When the wave impinges on a lighter fluid, i.e. 𝜌2 < 𝜌1 so 𝑉1 < 𝑉2, the coefficient of the second
term is negative. As 𝜃0 increases from 0 to a critical angle

𝜃0,crit = arccot
(
𝑉2 −𝑉1

𝑉1
cot 𝛼

)
= arctan

(
𝑉1

𝑉2 −𝑉1
arctan𝛼

)
, (184)

the refraction angle 𝜃𝑅 increases from 0 to 𝜋/2, in which case the the phase of refracted wave seems to
propagate along the surface. And as the incidence angle further increases to near 𝜋/2, the refracted wave
begins to propagate downwards, up to an angle

𝜃𝑇,sup = 𝜋 − arccot
(
𝑉2 −𝑉1

𝑉1
cot𝛼

)
= 𝜋 − arctan

(
𝑉1

𝑉2 −𝑉1
tan𝛼

)
. (185)

The discussion on the same topic by Ferraro (1954) seems to be wrong, as in the process 𝜃𝑇 should
actually be continuously changing, instead of going abruptly to 𝜋 and then decrease. Either way, however,
we see that according to these laws, the wave vector or the phase velocity of the transmitted wave can
well be pointing downwards, i.e. k𝑇 · n̂ < 0 or c𝑝 · n̂ < 0. However, it can be easily shown that within
this entire range, it remains true that k𝑇 ·B∥

0 = k𝑇 ·B0 > 0. In fact, as long as the law of refraction holds,
we can write

cos⟨k𝑇 ,B∥
0⟩ = (cos𝛼x̂′′ + sin𝛼ẑ) · (sin 𝜃𝑇 x̂′′ + cos 𝜃𝑇 ẑ)

= cos𝛼 sin 𝜃𝑇 + sin𝛼 cos 𝜃𝑇

=
1

sin 𝜃𝑇 sin𝛼
(cot𝛼 + cot 𝜃𝑇 )

=
1

sin 𝜃𝑇 sin𝛼
𝑉1

𝑉2
(cot𝛼 + cot 𝜃0)

=
𝑉1 sin 𝜃0

𝑉2 sin 𝜃𝑇
cos⟨k0,B∥

0⟩

Since 𝜃0 and 𝜃𝑇 are both defined within [0, 𝜋], the sines are definitely non-negative. It follows if the
incidence wave is propagating downwind (cos⟨k0,B∥

0⟩ > 0), then the refracted wave is also guaranteed to
propagate downwind. Therefore, the wave velocity still propagates in the positive B0 direction, carrying
energy and information away from the interface.

We have now seen that the separation between phase and group velocities result in some counterin-
tuitive results. When B0 is not perpendicular to the interface, a plane Alfvén wave can have wave vectors
that are within 𝜋/2 from the B̂0, but > 𝜋/2 from n̂. The phase velocity, therefore, can point towards
the interface, while the group velocity points away from it. For the incidence wave, it also means that it
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is possible that the phase velocity can point away from the interface, while the group velocity reserves
a positive plane-normal component. This would correspond to a scenario where 𝜋 falls in the second
or third quadrant, i.e. ∈ (𝜋/2, 3𝜋/2), and 𝜃0 > 𝜋/2. As I have mentioned, most discussions above on
the minimum and maximum implicitly assume 𝜃0 < 𝜋/2 and |𝜙 | < 𝜋/2. [Once again I emphasize a
comprehensive analysis of the energy flow is crucial in understanding the mechanism.]

Conservational quantities in reflection and refraction

In Snell’s law for optics and seismology, we know that the horizontal slowness

𝑝 =
sin 𝜃
𝑉

is preserved during reflection and refraction. I now realize one can derive similar quantities for Alfvén waves, where the
laws of reflection and refraction can be written as

cot 𝜃𝑅 + cot𝛼 = −(cot 𝜃0 + cot𝛼), 𝑉2 (cot 𝜃𝑇 + cot𝛼) = 𝑉1 (cot 𝜃0 + cot𝛼)

and so the following quantity is preserved in reflection and refraction

𝑉𝐴(cot 𝜃 + cot𝛼) (186)

where 𝑉𝐴 takes the positive sign when wave propagates downwind, and the negative sign otherwise. We also further
observe that

k̂ · B̂∥
0 = cos𝛼 sin 𝜃 + sin𝛼 cos 𝜃 =

cot 𝜃 + cot𝛼
sin 𝜃 sin𝛼

Therefore the quantity
𝑉𝐴(k̂ · B̂∥

0 ) sin 𝜃 sin𝛼 = 𝑐
∥
𝑝 sin 𝜃 sin𝛼 (187)

is also preserved, where 𝑐∥𝑝 = 𝑉𝐴(k̂ · B̂∥
0 ) is the "phase velocity" constrained by the projected background field. The

convention for the sign of 𝑉𝐴 and 𝑐𝑝 remains the same.

A.1.4 Polarization

The polarization in this problem is straightforward. From the solenoidal property of B, one concludes
that

b0 · k0 = 0, b𝑅 · k𝑅 = 0, b𝑇 · k𝑇 = 0

In addition, we have seen that under the aforementioned boundary conditions, all three waves (incidence,
reflection, transmission) are polarized in the same direction. But since the three wave vectors are
generally not aligned (except for the normal incidence case, where all polarizations are possible), the
only possible polarization is

b0, b𝑅, b𝑇 , u0, u𝑅, u𝑇 ∥ ŷ′′. (188)

[This raises yet another question: what would happen when the Alfvén waves polarized in directions
other than ŷ′′ reaches the boundary? Remember that ŷ′′ is defined by the interface orientation and the
wave vector. In the interior of the fluid, the wave does not "see" the boundary, and can of course polarize
in any direction perpendicular to k.]
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B Preliminary results of 3-D reflection

Here I document some intermediate, preliminary results that I derived when considering 3-D reflection.
These results only apply to horizontally polarized Alfvén waves, indicating there might be ingredients
missing from the picture.

B.1 Oblique incidence at resistive wall: inviscid case

First, I consider the oblique incidence at a solid resistive wall for inviscid fluid. For completely inviscid
case, there is no Hartmann layer that can be established at the boundary.

B.1.1 Problem setup

From section (A.1), especially from eq.(180) and the related discussions, it seems it is more suitable
to use the plane of incidence, instead of the plane of background field, as the main frame of reference.
Inspired by this, I define𝑂𝑥𝑧 as the plane of incidence. One can already postulate that the incidence and
reflected waves share the same horizontal wavenumber, in which case 𝜙𝑅 = 𝜙0 = 0. The wave vectors of
incidence and reflected waves are

k0 = 𝑘0(sin 𝜃0, 0, cos 𝜃0), k𝑅 = 𝑘𝑅 (sin 𝜃𝑅, 0, cos 𝜃𝑅) (189)

and the background field takes the form

B0 = 𝐵0(sin 𝜃𝐵 cos 𝜙𝐵, sin 𝜃𝐵 sin 𝜙𝐵, cos 𝜃𝐵) = (𝐵∥ cos𝛼, 𝐵⊥, 𝐵∥ sin𝛼). (190)

As always, the background field is assumed to have positive vertical component, i.e. 𝜃𝐵 ∈ [0, 𝜋/2), or
𝛼 ∈ (0, 𝜋). The whole fields in the fluids are

b = b0 exp
{
𝑖𝜔

[
𝑡 − 𝑘0

𝜔
(sin 𝜃0𝑥 + cos 𝜃0𝑧)

]}
+ b𝑅 exp

{
𝑖𝜔

[
𝑡 − 𝑘𝑅

𝜔
(sin 𝜃𝑅𝑥 + cos 𝜃𝑅𝑧)

]}
u = − b0

√
𝜌𝜇0

exp
{
𝑖𝜔

[
𝑡 − 𝑘0

𝜔
(sin 𝜃0𝑥 + cos 𝜃0𝑧)

]}
+ b𝑅
√
𝜌𝜇0

exp
{
𝑖𝜔

[
𝑡 − 𝑘𝑅

𝜔
(sin 𝜃𝑅𝑥 + cos 𝜃𝑅𝑧)

]}
.

(191)
For the boundary condition, we require that the velocity field is non-penetrating (we don’t yet have any
assumption on the polarization), and that the electromagnetic field should match the electromagnetic
field in the boundary. As before, we enforce homogeneous Dirichlet boundary condition on the magnetic
field, effectively assuming that the field in the insulating wall is negligible. These boil down to

n̂ · u|𝑧=0 = 0, b|𝑧=0 = 0. (192)

Naturally, there is no kinematic boundary condition for the other velocity components that can be enforced
at the interface, due to the inviscid assumption.

B.1.2 Solution for the magnetic and velocity fields

In addition to the boundary conditions, we have the extra constraints that (i) the plane waves are solutions
to the Alfvén wave equation, i.e. satisfy the aforementioned dispersion relation, and (ii) the plane waves
represent longitudinal waves due to the solenoidal property of u and b. First, I use the dispersion relation
to determine the wavenumbers. We recall that the dispersion relation can be transformed into

k · B0√
𝜌𝜇0

=
k · B∥√
𝜌𝜇0

= ±𝜔 (193)
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Figure 9: Setup of oblique incidence at resistive wall

where we have introduced B∥ = B0 − (B0 · ŷ)ŷ, which is the projection of the background field onto the
plane of incidence. If we redefine an Alfvén wave velocity that is induced by the in-plane component of
background field

𝑉
∥
𝐴
=

𝐵∥√
𝜌𝜇0

(194)

then for the travelling wave solutions, obviously we have

k0 · B̂∥ =
𝜔

𝑉
∥
𝐴

, 𝑘0 =
1

sin 𝜃0 cos𝛼 + cos 𝜃0 sin𝛼
𝜔

𝑉
∥
𝐴

=
1

k̂0 · B̂∥

𝜔

𝑉
∥
𝐴

k𝑅 · −B̂∥ =
𝜔

𝑉
∥
𝐴

, 𝑘0 = − 1
sin 𝜃𝑅 cos𝛼 + cos 𝜃𝑅 sin𝛼

𝜔

𝑉
∥
𝐴

= − 1
k̂𝑅 · B̂∥

𝜔

𝑉
∥
𝐴

(195)

which gives the expression for the wave vectors. Next, we use the boundary conditions, which yield

− (n̂ · b0) exp

{
−𝑖 𝜔
𝑉

∥
𝐴

sin 𝜃0𝑥

sin 𝜃0 cos𝛼 + cos 𝜃0 sin𝛼

}
+ (n̂ · b𝑅) exp

{
𝑖
𝜔

𝑉
∥
𝐴

sin 𝜃𝑅𝑥
sin 𝜃𝑅 cos𝛼 + cos 𝜃𝑅 sin𝛼

}
= 0

b0 exp

{
−𝑖 𝜔
𝑉

∥
𝐴

sin 𝜃0𝑥

sin 𝜃0 cos𝛼 + cos 𝜃0 sin𝛼

}
+ b𝑅 exp

{
𝑖
𝜔

𝑉
∥
𝐴

sin 𝜃𝑅𝑥
sin 𝜃𝑅 cos𝛼 + cos 𝜃𝑅 sin𝛼

}
= 0

(196)
The matching of phase yields the relation

sin 𝜃0

sin 𝜃0 cos𝛼 + cos 𝜃0 sin𝛼
=

− sin 𝜃𝑅
sin 𝜃𝑅 cos𝛼 + cos 𝜃𝑅 sin𝛼

=⇒ cot 𝜃𝑅 + cot𝛼 = − cot 𝜃0 − cot𝛼, cot 𝜃𝑅 = − cot 𝜃0 − 2 cot𝛼
(197)

which is the law of reflection for this setup. We see this is exactly the same as eq.(173). This does not
come as a surprise; in general, all scenarios with similar settings will have the same reflection relation, as
dictated by the matching of phase on the interface, or equivalently matching of horizontal wavenumber.
The matching of amplitudes and the solenoidal property yield the relations

n̂ · (b0 − b𝑅) = 0, b0 + b𝑅 = 0, b0 · k0 = b𝑅 · k𝑅 = 0. (198)
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The first two equation yields the relation

b𝑅 = −b0 ⊥ n̂, (199)

which, in combination with the latter two relations, fixes the polarization of both the incoming and
reflected Alfvén wave in the ŷ direction, or polarized normal to the plane of incidence. The reflection
coefficient 𝑅𝑏 = −1 indicates the half-wave loss when the Alfvén wave in an inviscid fluid impinges on
an insulating wall.

B.1.3 Electromagnetic waves in the wall

Once again I check the role of electromagnetic wave solution in the insulating wall. To this end, the
displacement current has to be reintroduced. Here in both media I only consider the waves polarized
in the ŷ direction, normal to the plane of incidence (the "AH" configuration). In the insulating wall,
the electromagnetic wave takes the form

b = ŷ𝑏𝑤 exp
{
𝑖𝜔

(
𝑡 − 1

𝑐
(sin 𝜃𝑇𝑥 + cos 𝜃𝑇 𝑧)

)}
. (200)

Now that we have a proper electromagnetic wave solution that couples the electric and magnetic fields
in the insulating wall (note in the quasi-static limit where displacement current is neglected, the electric
and the magnetic fields are virtually decoupled, and satisfy Laplace equation separately), we can then
properly impose an additional continuity on the tangent electric field. To this end I shall first derive the
electric fields in both media

e =



𝜂∇ × b − u × B0 = 𝜂∇ × b − 𝑢ŷ × B∥

= x̂
(
𝑖𝜂𝑘0 cos 𝜃0𝑏

0𝑒𝑖𝜑0 + 𝑖𝜂𝑘𝑅 cos 𝜃𝑅𝑏𝑅𝑒𝑖𝜑𝑅
)
− ẑ

(
𝑖𝜂𝑘0 sin 𝜃0𝑏

0𝑒𝑖𝜑0 + 𝑖𝜂𝑘𝑅 sin 𝜃𝑅𝑏𝑅𝑒𝑖𝜑𝑅
)

− x̂
𝐵∥ sin𝛼
√
𝜌𝜇0

(
−𝑏0𝑒𝑖𝜑0 + 𝑏𝑅𝑒𝑖𝜑𝑅

)
+ ẑ

𝐵∥ cos𝛼
√
𝜌𝜇0

(
−𝑏0𝑒𝑖𝜑0 + 𝑏𝑅𝑒𝑖𝜑𝑅

)
= x̂

((
𝑖𝜂𝑘0 cos 𝜃0 +𝑉 ∥

𝐴
sin𝛼

)
𝑏0𝑒𝑖𝜑0 +

(
𝑖𝜂𝑘𝑅 cos 𝜃𝑅 −𝑉 ∥

𝐴
sin𝛼

)
𝑏𝑅𝑒𝑖𝜑𝑅

)
− ẑ

((
𝑖𝜂𝑘0 sin 𝜃0 +𝑉 ∥

𝐴
cos𝛼

)
𝑏0𝑒𝑖𝜑0 +

(
𝑖𝜂𝑘𝑅 sin 𝜃𝑅 −𝑉 ∥

𝐴
cos𝛼

)
𝑏𝑅𝑒𝑖𝜑𝑅

)
, (𝑧 < 0)

𝑐2

𝑖𝜔
∇ × b = (x̂𝑐 cos 𝜃𝑇 − ẑ𝑐 sin 𝜃𝑇 ) 𝑏𝑤𝑒𝑖𝜑𝑇 , (𝑧 > 0)

(201)
We see that the electric field is polarized in the plane of incidence, and has in general both x̂ and ẑ
components. In the insulating medium, the electric field is in phase with the magnetic field, characteristic
of the electromagnetic wave in vacuum. It is also the case for the electric field induced by fluid motion
in the conducting fluid. The conducted electric field, however, shows a 𝜋/2 phase difference.

Now we are in the position to impose two electromagnetic boundary conditions: continuity of the
tangent magnetic field, and the continuity of the tangent electric field

𝑏𝑦 |𝑧=0− = 𝑏𝑦 |𝑧=0+ , 𝑒𝑥 |𝑧=0− = 𝑒𝑥 |𝑧=0+ .

The two relations give

𝑏0𝑒𝑖𝜑0 + 𝑏𝑅𝑒𝑖𝜑𝑅 = 𝑏𝑤𝑒
𝑖𝜑𝑇(

𝑖𝜂𝑘0 cos 𝜃0 +𝑉 ∥
𝐴

sin𝛼
)
𝑏0𝑒𝑖𝜑0 +

(
𝑖𝜂𝑘𝑅 cos 𝜃𝑅 −𝑉 ∥

𝐴
sin𝛼

)
𝑏𝑅𝑒𝑖𝜑𝑅 = 𝑐 cos 𝜃𝑇𝑏𝑤𝑒𝑖𝜑𝑇

(202)

Again this requires the matching of both phase and amplitudes. The phase matching gives

sin 𝜃0

sin 𝜃0 cos𝛼 + cos 𝜃0 sin𝛼
=

− sin 𝜃𝑅
sin 𝜃𝑅 cos𝛼 + cos 𝜃𝑅 sin𝛼

=
𝑉

∥
𝐴

𝑐
sin 𝜃𝑇 (203)
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Aside from the already established reflection law (eq.197), we also obtain the law of refraction

sin 𝜃𝑇 =
𝑐

𝑉
∥
𝐴

tan 𝜃0

tan 𝜃0 cos𝛼 + sin𝛼
= 𝛽−1

𝐴

tan 𝜃0

tan 𝜃0 cos𝛼 + sin𝛼
= 𝛽−1

𝐴

1
cos𝛼 + cot 𝜃0 sin𝛼

(204)

where we once again introduced the dimensionless group 𝛽𝐴 = 𝑉
∥
𝐴
/𝑐 defined for the in-plane Alfvén

wave velocity. At the limit of normal incidence, 𝜃0 → 0, it is apparent that sin 𝜃𝑇 → 0 and so the
transmitted wave is also normal to the boundary. However, because 𝛽𝐴 ∼ 10−11 in the Earth core is
very small, only within a very narrow range of 𝜃0 (𝜃0 ∼ 10−11rad if tan𝛼 ∼ 1) can the RHS be no
greater than 1 for the transmitted electromagnetic wave to be a travelling wave. Otherwise, sin 𝜃𝑇 will
be massively greater than 1, which gives rise to a purely imaginary cos 𝜃𝑇 , forcing the transmitted wave
to be a evanescent wave in the 𝑧 direction, which takes the form

𝑏𝑤 exp

𝑖𝜔𝑡 −
𝜔

𝑉
∥
𝐴

𝑖𝑥 +
√︃

1 − 𝛽2
𝐴
(cos𝛼 + cot 𝜃0 sin𝛼)2𝑧

cos𝛼 + cot 𝜃0 sin𝛼

 ≈ 𝑏𝑤 exp

{
𝑖𝜔𝑡 − 𝜔

𝑉
∥
𝐴

𝑖𝑥 + 𝑧
cos𝛼 + cot 𝜃0 sin𝛼

}
when |𝛽𝐴(cos𝛼 + cot 𝜃0 sin𝛼) | ≪ 1. The "skin-depth", or the length scale over which the wave decays,
is 𝑉 ∥

𝐴
/𝜔, which is the Alfvén wave length 𝜆𝐴. Therefore, even if the wave is evanescent, the skin depth

can be considerable, especially at lower periods.
Assuming the phases are properly matched, and plugging in the expression for 𝑘 , the second equation

can be rearranged into(
𝑖
𝜔𝜂

𝑉
∥
𝐴

1
tan 𝜃0 cos𝛼 + sin𝛼

+𝑉 ∥
𝐴

sin𝛼

)
𝑏0 −

(
𝑖
𝜔𝜂

𝑉
∥
𝐴

1
tan 𝜃0 cos𝛼 + sin𝛼

+𝑉 ∥
𝐴

sin𝛼

)
𝑏𝑅 = 𝑐 cos 𝜃𝑇𝑏𝑤

Introducing the Lundquist number for in-plane background field

𝑆𝜂 ∥ =

(
𝑉

∥
𝐴

)2

𝜔𝜂

and the set of equations are reduced to

𝑏0 + 𝑏𝑅 = 𝑏𝑤

𝛽𝐴

[(
𝑖𝑆−1
𝜂 ∥

1
tan 𝜃0 cos𝛼 + sin𝛼

+ sin𝛼
)
𝑏0 −

(
𝑖𝑆−1
𝜂 ∥

1
tan 𝜃𝑅 cos𝛼 + sin𝛼

+ sin𝛼
)
𝑏𝑅

]
= cos 𝜃𝑇𝑏𝑤

(205)

The role of transmitted wave is again seen as a higher order correction in 𝛽𝐴 for the reflection coefficients

𝑅𝑏 =
𝑏𝑅

𝑏0 = −
cos 𝜃𝑇 − 𝛽𝐴

(
sin𝛼 + 𝑖𝑆−1

𝜂 ∥
1

tan 𝜃0 cos 𝛼+sin 𝛼

)
cos 𝜃𝑇 + 𝛽𝐴

(
sin𝛼 + 𝑖𝑆−1

𝜂 ∥
1

tan 𝜃𝑅 cos 𝛼+sin 𝛼

) (206)

At 𝛽𝐴 → 0 it simply reduces to the half-wave loss 𝑅𝑏 = −1. For normal incidence with background field
normal to the plane, 𝛼 = 𝜃0 = 𝜃𝑇 = 0 and 𝜃𝑅 = 𝜋, the relation reduces to

𝑅𝑏 = −
1 − 𝛽𝐴(1 + 𝑆−1

𝜂 )
1 + 𝛽𝐴(1 + 𝑆−1

𝜂 )

which gives exactly the same relation as the limiting case at Pm → 0 for the 1-D model.
[Similar to the Ferraro (1954) case, the inviscid case seems to only permit reflection and refraction of

waves polarized in a specific direction, i.e. normal to the plane of incidence (the horizontally polarized
Alfvén wave). The natural question is, what happens to Alfvén waves with other polarizations? In
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seismology, the so-called SV waves can be converted to P waves at the boundary. However, there is no
analog of P wave in the context of Alfvén waves. Therefore, with vertical polarization, Alfvén waves
(and EM waves) cannot simultaneously satisfy the magnetic boundary condition and the non-penetration
boundary condition. However, a vertically polarized Alfvén wave is perfectly imaginable and physically
possible. What is the way out of this?]

[There might three candidates out of this. (i) Viscous dissipation can be reintroduced to build up
some boundary layers (e.g. Hartmann boundary layer, etc.) Problem is, anisotropic boundary layer does
not seem to allow oscillation in one direction (x) while decaying in another, this means there is little hope
to match the horizontal wavenumber. (ii) Incompressibility of the fluid may be relaxed; one may require
other kinds of waves to be triggered at the boundary, for instance the magneto-acoustic waves. However,
the wave speeds and length scales may be very different. (iii) The forces at the boundary is accounted
for by something other than waves. The Alfvén wave equation might be inadequate.]

B.2 Oblique incidence at resistive wall: viscous case

I hereby carry out the oblique incidence analysis in a regime where both magnetic and viscous diffusions
are present. To this end, I shall make use of the results from the previous section, where I explicitly
derived the expression for 𝑘̃𝑧 when the horizontal slowness 𝑝 is given beforehand. I shall also adopt
a parameterization in line with these derivations. Instead of parameterizing the wave vector as k =

𝑘 (sin 𝜃x̂ + cos 𝜃ẑ), I shall parameterize it as k = 𝜔𝑝x̂ + 𝑘𝑧 ẑ. The fields can then be written as

b = b0 exp
{
𝑖

(
𝜔𝑡 − 𝜔𝑝𝑥 − 𝑘0

𝑧𝑧

)}
+ b𝑅 exp

{
𝑖

(
𝜔𝑡 − 𝜔𝑝𝑥 − 𝑘𝑅𝑧 𝑧

)}
+ bBL exp

{
𝑖

(
𝜔𝑡 − 𝜔𝑝𝑥 − 𝑘BL

𝑧 𝑧

)}
u = 𝐶0

b0
√
𝜌𝜇0

exp
{
𝑖

(
𝜔𝑡 − 𝜔𝑝𝑥 − 𝑘0

𝑧𝑧

)}
+ 𝐶𝑅

b𝑅
√
𝜌𝜇0

exp
{
𝑖

(
𝜔𝑡 − 𝜔𝑝𝑥 − 𝑘𝑅𝑧 𝑧

)}
+ 𝐶BL

bBL
√
𝜌𝜇0

exp
{
𝑖

(
𝜔𝑡 − 𝜔𝑝𝑥 − 𝑘BL

𝑧 𝑧

)}
(207)

The merit of this formulation is that the phases are automatically matched. For 𝑘𝑧 , we need to use the
results from the previous section.

B.2.1 Zeroth-order approximation

Dimensionalizing the expressions for 𝑘̃𝑧 , we have

𝑘̃
prop
𝑧 =

±1 − 𝑝 cos𝛼
sin𝛼

=⇒ 𝑘
prop
𝑧 =

𝜔

𝑉𝐴 sin𝛼
(±1 − 𝑝𝑉𝐴 cos𝛼)

𝑘̃BL
𝑧 = ±𝑖

𝑆𝜂 sin𝛼
√

Pm
=⇒ 𝑘BL

𝑧 = ±𝑖𝑉𝐴 sin𝛼
√
𝜈𝜂

(208)

Here I use the zeroth-order approximation, because it is the only approximation I have for arbitrary 𝛼.
Note that what Schaeffer, Jault, et al. (2012) and Schaeffer and Jault (2016) used is also the zeroth-order
approximation. The relative error in their wavenumbers are also 𝑂 (𝑆−1

𝜔 ). For the incidence wave, the
positive sign in 𝑘prop

𝑧 is taken; for the reflected wave, we take the negative sign; for the Hartmann layer,
we take the positive sign because we need a solution that decays in the negative 𝑧-direction. In the end,
the magnetic field is

b = b0 exp
{
𝑖𝜔

(
𝑡 − 𝑝𝑥 − 1 − 𝑝𝑉𝐴 cos𝛼

𝑉𝐴 sin𝛼
𝑧

)}
+ b𝑅 exp

{
𝑖𝜔

(
𝑡 − 𝑝𝑥 + 1 + 𝑝𝑉𝐴 cos𝛼

𝑉𝐴 sin𝛼
𝑧

)}
+ bBL exp

{
𝑖𝜔 (𝑡 − 𝑝𝑥) + 𝑉𝐴 sin𝛼

√
𝜈𝜂

𝑧

}
.

(209)
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To the zeroth order, we see from below that there are no modifications as to the coefficients of the
velocity field. The derivations should still be based on the Navier-Stokes part of the Alfvén wave equation

(𝑖𝜔 + 𝜈𝑘2)u = −𝑖B0 · k
𝜌𝜇0

b = −𝑖𝑉𝐴(B̂0 · k) b
√
𝜌𝜇0

For the travelling wave, 𝜈𝑘2 ≪ 𝜔 and B̂0 · k = 𝜔/𝑉𝐴 we have

u = ∓ b
√
𝜌𝜇0

+𝑂
(
𝑆−1
𝜂

)
.

For the boundary layer solution, again we have 𝜈𝑘2 ≫ 𝜔; the inner product B̂0 · k is to zeroth order
𝑖𝑉𝐴 sin𝛼/√𝜈𝜂. The sin2 𝛼 that arises from 𝑘2 should in the end cancel out with the same factor from
B̂0 · k. Therefore, the velocity field is still

u = −Pm− 1
2

b
√
𝜌𝜇0

+𝑂
(
𝑆−1
𝜂

)
.

In the end, 𝐶0 = −1. 𝐶𝑅 = 1, 𝐶BL = −Pm− 1
2 . The velocity field can still be written as

u = − b0
√
𝜌𝜇0

exp
{
𝑖𝜔

(
𝑡 − 𝑝𝑥 − 1 − 𝑝𝑉𝐴 cos𝛼

𝑉𝐴 sin𝛼
𝑧

)}
+ b𝑅
√
𝜌𝜇0

exp
{
𝑖𝜔

(
𝑡 − 𝑝𝑥 + 1 + 𝑝𝑉𝐴 cos𝛼

𝑉𝐴 sin𝛼
𝑧

)}
− 1
√

Pm
bBL
√
𝜌𝜇0

exp
{
𝑖𝜔 (𝑡 − 𝑝𝑥) + 𝑉𝐴√

𝜈𝜂
𝑧

}
.

(210)

For the boundary condition, in the viscous case we should have both continuity of magnetic field
(which gives homogeneous Dirichlet condition on b), as well as the continuity of velocity (which gives
no-slip condition). Setting both fields to be zero at the boundary, we end up with the exact same relation
as before

b0 + b𝑅 + bBL = 0

−b0 + b𝑅 − Pm− 1
2 bBL = 0

(211)

which gives the relations

bBL = − 2
√

Pm
1 +

√
Pm

b0, b𝑅 = −1 −
√

Pm
1 +

√
Pm

b0. (212)

These are exactly the same relation as in the 1-D normal incidence case. It seems that, along the
derivations, nothing changes. While it is straightforward to see a priori that the boundary condition
on magnetic field yields the same equation, the boundary condition on the velocity field also does not
introduce anything new. Indeed, when 𝑝𝑉𝐴 is of order unity and so is sin𝛼, to first order accuracy in
𝑆−1
𝜂 , the ratio between the u and b is independent of both the orientation of the background magnetic

field and the horizontal wavenumber. However, I do anticipate the orientation quantities to be present in
first order refinement term (of the order 𝑆−1

𝜂 ).
Compared to the 1-D problem, there are only two new things in the oblique incidence. First,

the reflection law is non-trivial. Although one can independently derive this law of reflection in this
parameterization, there is no doubt the result takes the exact same form as eq.(197) as well as eq.(173).
The reason is that all that matters in the law of reflection (and refraction) is the match of argument of
the exponential function, which remains the same for all oblique incidence problems involving incidence
and reflected planar Alfvén waves.

Secondly, since in principle eq.212 give vector equations, we can conclude that the three solutions
(incidental Alfvén wave, reflected Alfvén wave and Hartmann layer) are polarized in the same direction.
Furthermore, due to the solenoidal condition on u and b, this polarization should be perpendicular to all

57



wave vectors. From this we again arrive at the same conclusion as Ferraro (1954), that the incidental and
reflected Alfvén waves (in this case also the Hartmann layer) are polarized in the 𝑦-direction, i.e. in and
out of the plane of incidence.

[It remains unsolved, however, how vertically-polarized Alfvén wave should behave at the bound-
aries.]

B.2.2 Precise form

Here I list the corresponding precise form in terms of 𝑘𝑧 , where 𝑘𝑧 needs to be calculated using eq.(68)
or (70). The coefficients 𝐶0, 𝐶𝑅 and 𝐶BL are given by

𝐶 =
−𝑖𝑉𝐴(𝜔𝑝 cos𝛼 + 𝑘𝑧 sin𝛼)

𝑖𝜔 + 𝜈(𝜔2𝑝2 + 𝑘2
𝑧)

(213)

where 𝑘𝑧 takes the respective solutions from eq.(70) for each wave. The boundary condition then yields

b0 + b𝑅 + bBL = 0

𝐶0b0 + 𝐶𝑅b𝑅 + 𝐶BLbBL = 0.
(214)

The solutions are then given by

bBL = − 𝐶𝑅 − 𝐶0

𝐶𝑅 − 𝐶BL
b0, bBL = −𝐶0 − 𝐶BL

𝐶𝑅 − 𝐶BL
b0. (215)

Since the coefficients𝐶 are in general functions in the form of𝐶 (𝜔, 𝑝, 𝛼), one can anticipate the reflection
coefficients will also be a function of these quantities.
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C Solving perturbed eigenvalue problems

C.1 Perturbed polynomial equations

In this section, I shall discuss the modification of roots of polynomials in presence of perturbations in
the coefficients. This arises when a polynomial (arising e.g. as characteristic polynomials in eigenvalue
problems) is not analytically solvable, but a simplified version (e.g. when neglecting some small
dimensionless quantities) has known solutions. It is then of interest to know how the solutions of the
polynomial are modified in presence of the small quantities as perturbations.

Let us consider an arbitrary degree-𝑁 polynomial equation

𝑝(𝑥) =
𝑁∑︁
𝑛=0

𝑎𝑛𝑥
𝑛 = 0 (216)

whose roots are known and given by {𝑥0,𝑛}𝑛=1:𝑁 . Now, let us consider the perturbed equation

𝑝∗(𝑥) = 𝑝(𝑥) + 𝜖𝛿𝑝(𝑥) =
𝑁∑︁
𝑛=0

(𝑎𝑛 + 𝜖𝛿𝑎𝑛)𝑥𝑛 = 0 (217)

where 𝛿𝑎𝑛 is the perturbation term and 𝜖 gives the perturbation amplitude. 𝛿𝑝(𝑥) is defined as
∑
𝑛 𝛿𝑎𝑛𝑥

𝑛.
The roots to this polynomial are unknown, and I denote these as {𝑥∗𝑛}. I take this form so that when
𝜖 → 0, 𝑥∗𝑛 → 𝑥0,𝑛. To quantify the sensitivity to the perturbation, I follow closely how one would
normally derive a condition number for numerical methods, and write 𝑥∗ = 𝑥0 + 𝛿𝑥,

𝑁∑︁
𝑛=0

(𝑎𝑛 + 𝜖𝛿𝑎𝑛) (𝑥0 + 𝛿𝑥)𝑛 = 0. (218)

Of course, this is still a degree-𝑁 polynomial of 𝛿𝑥. However, as 𝜖 can be arbitrarily small, so is 𝛿𝑥, and
the polynomial can be kept to the leading order. Although it is unclear what is the "leading order", since
we have no prior information on the scaling between 𝛿𝑥 and 𝜖 , one scenario is particularly simple. When
the root 𝑥0 is a simple root, and so 𝑑

𝑑𝑥
(∑𝑛 𝑎𝑛𝑥

𝑛) (𝑥 = 𝑥0) ≠ 0, we can simply linearize the equation,

𝑁∑︁
𝑛=0

(𝑎𝑛 + 𝜖𝛿𝑎𝑛) (𝑥0 + 𝛿𝑥)𝑛

≈
𝑁∑︁
𝑛=0

(𝑎𝑛 + 𝜖𝛿𝑎𝑛)
(
𝑥𝑛0 + 𝑛𝑥𝑛−1

0 𝛿𝑥

)
≈

𝑁∑︁
𝑛=0

𝑎𝑛𝑥
𝑛
0 +

𝑁∑︁
𝑛=0

𝑛𝑎𝑛𝑥
𝑛−1
0 𝛿𝑥 + 𝜖

𝑁∑︁
𝑛=0

𝛿𝑎𝑛𝑥
𝑛
0

= 𝛿𝑥

𝑁∑︁
𝑛=0

𝑛𝑎𝑛𝑥
𝑛−1
0 + 𝜖

𝑁∑︁
𝑛=0

𝛿𝑎𝑛𝑥
𝑛
0 = 0,

which yields the perturbation in the root

𝛿𝑥 ≈ −𝜖
∑𝑁
𝑛=0 𝛿𝑎𝑛𝑥

𝑛
0∑𝑁

𝑛=0 𝑛𝑎𝑛𝑥
𝑛−1
0

= −𝜖 𝛿𝑝(𝑥0)
𝑝′(𝑥0)

. (219)

This result not only gives the leading order perturbation in the root, but also shows that 𝛿𝑥 ∼ 𝜖 to the
leading order (unless, of course, 𝛿𝑝(𝑥0) = 0, in which case 𝑥0 remains the true solution to the perturbed
system).

While the previous equation applies to any simple root, it does not hold for any multiple root. The
most obvious reason is that as 𝑝′(𝑥) = 0 at multiple roots, the linear term from the approximation is
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trivial, and eq.(219) is no longer valid. Conversely, one can prove that 𝛿𝑥 associated with roots 𝑥0 with
multiplicity cannot have the asymptotic behaviour of 𝑂 (𝜖). It in turn indicates that linearization fails to
capture all necessary terms of leading order. For a root with multiplicity of 𝐾 , it is necessary to keep all
terms up to 𝛿𝑥𝐾 ,

𝑁∑︁
𝑛=0

(𝑎𝑛 + 𝜖𝛿𝑎𝑛)
𝑛∑︁
𝑘=0

(
𝑛

𝑘

)
𝑥𝑛−𝑘0 𝛿𝑥𝑘

≈
𝐾∑︁
𝑘=0

𝛿𝑥𝑘
𝑁∑︁
𝑛=𝑘

(
𝑛

𝑘

)
(𝑎𝑛 + 𝜖𝛿𝑎𝑛)𝑥𝑛−𝑘0

=

𝐾∑︁
𝑘=0

𝛿𝑥𝑘

[
𝑁∑︁
𝑛=𝑘

(
𝑛

𝑘

)
𝑎𝑛𝑥

𝑛−𝑘
0 + 𝜖

𝑁∑︁
𝑛=𝑘

(
𝑛

𝑘

)
𝛿𝑎𝑛𝑥

𝑛−𝑘
0

]
=

𝐾∑︁
𝑘=0

𝛿𝑥𝑘

𝑘!
𝑝 (𝑘 ) (𝑥0) + 𝜖

𝐾∑︁
𝑘=0

𝛿𝑥𝑘

𝑘!
𝛿𝑝 (𝑘 ) (𝑥0)

Since the solution 𝑥0 has multiplicity 𝐾 , we have 𝑝 (𝑘 ) (𝑥0) = 0 (∀𝑘 < 𝐾). Only one term in the first
summation is kept. Therefore, the equation is simplified

𝑝 (𝐾 ) (𝑥0)
𝛿𝑥𝐾

𝐾!
+ 𝜖

𝐾∑︁
𝑘=0

𝛿𝑝 (𝑘 ) (𝑥0)
𝛿𝑥𝑘

𝑘!
= 0

𝛿𝑥𝐾
𝑁∑︁
𝑛=𝐾

(
𝑛

𝐾

)
𝑎𝑛𝑥

𝑛−𝑘
0 + 𝜖

𝐾∑︁
𝑘=0

𝛿𝑥𝑘
𝐾∑︁
𝑛=𝑘

(
𝑛

𝑘

)
𝛿𝑎𝑛𝑥

𝑛−𝑘
0 = 0.

(220)

Note that since the asymptotic behaviour of 𝛿𝑥 at 𝜖 → 0 is unknown, in generall all of the terms in
the second summation need to be kept. Therefore, for a solution with multiplicity 𝐾 , this approach still
requires solving a degree-𝐾 equation in general. The 𝐾 solutions to eqn.(220) create the splitting of the
original 𝐾-fold multiple roots, unless there are further multiplicity in the perturbations 𝛿𝑥, in which case
even higher powers need to be kept.

As a proof of concept, we look at two very simple, low-degree examples, whose closed-form solutions
are easily calculated. For the simple root example, let us look at

𝑝∗(𝑥) = 𝑥2 − (1 + 𝜖) =
(
𝑥2 − 1

)
− 𝜖 = 𝑝(𝑥) + 𝜖𝛿𝑝(𝑥).

The unperturbed polynomial 𝑝(𝑥) has two simple roots 𝑥1,2 = ±1. Following eqn.(219), the respective
perturbations are given by

𝛿𝑥1,2 ≈ −𝜖
𝛿𝑝(𝑥1,2)
𝑝′(𝑥1,2)

= −𝜖 −1
±2

= ± 𝜖
2

On the other hand, the exact solution to the perturbed system is known, and can be expanded as Taylor
series of 𝜖 at 𝜖 = 0,

𝑥∗1,2 = ±
√

1 + 𝜖 ≈ ±1 ± 𝜖

2
+𝑂 (𝜖2)

whose linear term is consistent with 𝛿𝑥1,2. For the multiple root example, we look at

𝑝∗(𝑥) = 𝑥2 − (2 + 2𝜖)𝑥 + 1 = (𝑥 − 1)2 − 𝜖 (2𝑥) = 𝑝(𝑥) + 𝜖𝛿𝑝(𝑥).

The unperturbed polynomial has a double root 𝑥1 = 𝑥2 = 1. Following eqn.(220), we keep the approxi-
mation to 𝐾 = 2, and get

2
2
𝛿𝑥2 + 𝜖 (−2 − 2𝛿𝑥) = 𝛿𝑥2 − 2𝜖𝛿𝑥 − 2𝜖 = 0

which gives
𝛿𝑥1,2 = 𝜖 ±

√︁
𝜖 (2 + 𝜖)
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In fact, this gives the exact solution of the perturbed system,

𝑥∗1,2 = 1 + 𝜖 ±
√︁
𝜖 (2 + 𝜖).

The double root example indicates another complication of estimating 𝛿𝑥 in terms of 𝜖 . In this example,
the asymptotic behaviour of 𝛿𝑥 at 𝜖 → 0 is ∼

√
2𝜖 . This asymptotic function has an essential singularity

(branch point in the complex plane) at 𝜖 → 0, and therefore has no power series (Taylor or Laurent) at
small perturbations. It would hence be a lost cause to expand 𝛿𝑥 in terms of 𝜖 .

C.2 Perturbed eigenvalue problems

While the previous section provides a neat way to calculated the perturbed eigenvalue from the charac-
teristic polynomial, it is often (as is the case of the derivations in previous sections) of equal interest to
know the perturbation in the eigenvectors. There are two approaches that can be taken. First, one can
plug the eigenvalue (with the correction) back into the original system to obtain the corrections on the
eigenvectors. For instance, the relative ratio between magnetic and velocity field in the Alfvén mode can
be retrieved from the frequency-wavenumber-domain induction equation(

𝑖𝜔 + 𝜂𝑘2
)

b = −𝑖𝐵0𝑘𝑧u.

On the other hand, the corrections in the eigenvalue and the eigenvectors can also be simultaneously
obtained by solving the perturbed eigenvalue problem. Let us consider the unperturbed matrix eigenvalue
problem

K0x = 𝜆M0x (221)

whose eigenvalues, denoted as {𝜆0𝑛}𝑛=1:𝑁 , and the corresponding eigenvectors {x0𝑛}𝑛=1:𝑁 , are both
known. Let us further assume that K0 and M0 are Hermitian (self-adjoint) matrices, and the eigenvalues
are all distinct. This leads to the orthogonality

x𝐻0𝑖M0x0 𝑗 = 𝛿𝑖 𝑗x𝐻0𝑖M0x0𝑖 = 𝛿𝑖 𝑗 ∥x0𝑖 ∥2
M0

= 𝛿𝑖 𝑗 . (222)

where the vector norms of the eigenvectors are assumed to be one to give unique eigenvectors (except
for a sign difference). Now consider the perturbed system

Kx = 𝜆Mx, K = K0 + 𝛿K, M = M0 + 𝛿M (223)

where the Hermitian property is conserved. The eigenvalues and corresponding eigenvectors are denoted
as {𝜆∗𝑛}𝑛=1:𝑁 = {𝜆0𝑛+𝛿𝜆𝑛} and {x∗𝑛}𝑛=1:𝑁 = {x0𝑛+𝛿x𝑛}, respectively. From the orthogonality condition
we have to leading order of perturbation

(x0𝑖 + 𝛿𝑥𝑖)𝐻 (M0 + 𝛿M)
(
x0 𝑗 + 𝛿x 𝑗

)
≈ x𝐻0𝑖M0x0 𝑗 + 𝛿x𝐻𝑖 M0x0 𝑗 + x𝐻0𝑖M0𝛿x 𝑗 + x𝐻0𝑖𝛿Mx0 𝑗

To enforce x𝐻
𝑖

Mx 𝑗 = x𝐻0𝑖M0x0 𝑗 = 0, it follows that the linearized perturbations are zero

𝛿x𝐻𝑖 M0x0 𝑗 + x𝐻0𝑖M0𝛿x 𝑗 + x𝐻0𝑖𝛿Mx0 𝑗 = 0. (224)

Next, expanding the new eigensystem and neglecting all quadratic perturbation terms, we arrive at

K0𝛿x𝑖 + 𝛿Kx0𝑖 = 𝜆0𝑖M0𝛿x𝑖 + 𝜆0𝑖𝛿Mx0𝑖 + 𝛿𝜆𝑖M0x0𝑖 (225)

Taking the inner product with x0𝑖 , taking the complex conjugate, and eliminating terms according to the
orthogonality condition,

x𝐻0𝑖K0𝛿x𝑖 + x𝐻0𝑖𝛿Kx0𝑖 = 𝜆0𝑖x𝐻0𝑖M0𝛿x𝑖 + 𝜆0𝑖x𝐻0𝑖𝛿Mx0𝑖 + 𝛿𝜆𝑖x𝐻0𝑖M0x0𝑖

𝛿x𝐻𝑖 (K0x0𝑖 − 𝜆0𝑖M0x0𝑖) + x𝐻0𝑖𝛿Kx0𝑖 = 𝜆0𝑖x𝐻0𝑖𝛿Mx0𝑖 + 𝛿𝜆𝑖
(226)
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which yields
𝛿𝜆𝑖 = x𝐻0𝑖 (𝛿K − 𝜆0𝑖𝛿M) x0𝑖 . (227)

Note in the derivation above we used the fact that 𝜆0𝑖 ∈ R and 𝛿𝜆𝑖 ∈ R, when K0, K and M0, M are all
Hermitian. The corrected eigenvalue thus takes the form

𝜆𝑖 = 𝜆0𝑖 + x𝐻0𝑖 (𝛿K − 𝜆0𝑖𝛿M) x0𝑖 = 𝜆0𝑖 +
x𝐻0𝑖 (𝛿K − 𝜆0𝑖𝛿M) x0𝑖

x𝐻0𝑖M0x0𝑖
. (228)

Secondly, in order to get the corrections to the eigenvectors, one needs to expand the perturbation in
terms of unperturbed eigenvectors. This allows one to use the orthogonality and the completeness of the
original eigenvectors.

𝛿x𝑖 =
∑︁
𝑗

𝜀𝑖 𝑗x0 𝑗 , 𝜀𝑖 𝑗 =
x𝐻0 𝑗M0𝛿x𝑖
x𝐻0 𝑗M0x0 𝑗

= x𝐻0 𝑗M0𝛿x𝑖 (229)

From the orthogonality condition eq.(224), One can conclude that the matrix elements 𝜀𝑖 𝑗 has the
property: ∑︁

𝑘

𝜀𝑖𝑘x𝐻0𝑘M0x0 𝑗 +
∑︁
𝑘

𝜀 𝑗𝑘x𝐻0𝑖M0x0𝑘 + x0𝑖𝛿Mx0 𝑗 = 0

=⇒ 𝜀𝑖 𝑗 + 𝜀 𝑗𝑖 + x0𝑖𝛿Mx0 𝑗 = 0.
(230)

The linearized eigensystem, on the other hand, can be used by taking the inner product with x0 𝑗 , and
taking the complex conjugate,∑︁

𝑗

(K0 − 𝜆0𝑖M0) 𝜀𝑖 𝑗x0 𝑗 = −𝛿Kx0𝑖 + 𝜆0𝑖𝛿Mx0𝑖 + 𝛿𝜆𝑖M0x0𝑖∑︁
𝑗

(
𝜆0 𝑗 − 𝜆0𝑖

)
x𝐻0𝑘M0x0 𝑗𝜀𝑖 𝑗 = −x𝐻0𝑘𝛿Kx0𝑖 + 𝜆0𝑖x𝐻0𝑘𝛿Mx0𝑖 + 𝛿𝜆𝑖x𝐻0𝑘M0x0𝑖

(𝜆0𝑘 − 𝜆0𝑖) 𝜀𝑖𝑘 = −x𝐻0𝑘 (𝛿K − 𝜆0𝑖M0) x0𝑖 + 𝛿𝜆𝑖𝛿𝑖𝑘 .

(231)

For non-degenerate eigenvalues, as long as 𝑖 ≠ 𝑘 , 𝜆0𝑘 ≠ 𝜆0𝑖 . In this case, we directly obtain the solution

𝜀𝑖𝑘 = −
x𝐻0𝑘 (𝛿K − 𝜆0𝑖M0) x0𝑖

𝜆0𝑘 − 𝜆0𝑖
, 𝜆0𝑘 ≠ 𝜆0𝑖 . (232)

Problems arise when 𝑖 = 𝑘 . The modified eigensystem places no constraints on 𝜀𝑖𝑖 . If both systems are in
the real domain, one can conclude from the linearized orthogonality condition that 𝜀𝑖𝑖 = −x0𝑖𝛿Mx0𝑖/2; if
systems are in the complex domain, however, one can only say Re[𝜀𝑖𝑖] = −x0𝑖𝛿Mx0𝑖/2. The imaginary
part of 𝜀𝑖𝑖 only induces second-order effects in the magnitudes, and are thus absent from the linearized
form.
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