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Chapter 1

Solutions to the eigenvalue problems

I present here the solutions to the eigenvalue problems in the PG model. The full PG model is a dynamical
system described by system of PDEs

M𝑖

𝜕𝑥𝑖

𝜕𝑡
= F𝑖 (𝑥𝑖 , · · · 𝑥𝑁 ), 𝑖 = 1, 2 · · · 𝑁.

𝑥𝑖 are the dynamical variables in the PG model, Ψ, 𝑀𝑠𝑠, 𝑀𝜙𝜙, etc. If the boundary magnetic field is
described by 𝐵𝑟 , then 𝑁 = 15; alternatively, if the boundary magnetic field is described by 𝐵±

𝑠 , 𝐵±
𝜙

and
𝐵±
𝑧 , then 𝑁 = 20. The former provides a closed system under certain boundary conditions, but requires a

cylindrical-to-spherical transform. On the other hand, the latter is intrinsically in cylindrical coordinates,
but is not closed in the nonlinear case. However, in eigenvalue problems with static background flow,
the latter formulation is closed. For details, refer to the Ingredients document. Introducing

M =
©­­«
M1

. . .

M𝑁

ª®®¬ , F =
©­­«
F1
...

F𝑁

ª®®¬ , x =
©­­«
𝑥1
...

𝑥𝑁

ª®®¬ ,
we can formally write the system as

M 𝜕x
𝜕𝑡

= F (x).

If we consider perturbations near a time-invariant background field denoted as x0, the perturbed quantities
follow the linearized equations

M 𝜕x
𝜕𝑡

= 𝐷F (x0) x =
𝜕F (x0)
𝜕x0 x = K(x0) x.

This linear, autonomous dynamical system admits general solutions in the form of time-harmonic
functions x(𝑡) = x(0)𝑒𝜆𝑡 = x0𝑒𝑖𝜔𝑡 . The purpose of this chapter is therefore to present the solution of
eigenvalues 𝜆 and eigenmodes x(𝑡 = 0) to the eigenvalue problem in the form of

𝜆Mx = 𝑖𝜔Mx = K(x0) x. (1.1)

Unless otherwise specified, throughout this chapter the term eigenvalue refers to 𝜆 = 𝑖𝜔 ∈ C defined
in eq.(1.1). 𝜎 = Re[𝜆] gives the exponential growth / decay rate, while 𝜔 = Im[𝜆] gives the angular
frequency of temporal oscillations (eigenfrequency). For systems free of both viscous and magnetic
diffusion, physics dictates that Re[𝜆] = 0 or 𝜔 = 𝜔, except for small numerical errors. Hereinafter such
systems are described as ideal.

I shall present the solutions to the eigenvalue problems under several background fields x0. In each
case, I shall provide the solved system, simplified equation, spectrum of the system, as well as selected
eigenmodes. In this chapter, the spectrum of a system or matrix refers to the set of eigenvalues, whereas
the spectrum of an eigenmode refers to the composition of the mode in terms of basis functions.
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1.1 Inviscid hydrodynamic eigenmodes

We start by considering the eigenmodes in absence of magnetic fields in the inviscid limit. From the ideal
PG equations, it means that the system is linearized around a background state where both the velocity
and the magnetic fields are zero.

1.1.1 Linearized equations

The PG system in purely invscid hydrodynamic case comprises only of the streamfunction equation,[
𝜕

𝜕𝑠

(
𝑠

𝐻

𝜕

𝜕𝑠

)
+

(
1
𝑠𝐻

+ 𝑠

2𝐻3

)
𝜕2

𝜕𝜙2

]
𝜕𝜓

𝜕𝑡
=

2𝑠
𝐻3

𝜕𝜓

𝜕𝜙
(1.2)

while all magnetic quantities vanish. There is no difference between the PG equation, the transformed
equation, or the reduced dimensional formulation, as only the streamfunction is relevant. Note for the
hydrodynamic case, the rotation timescale 𝜏 = Ω−1 is used.

1.1.2 Standard ODE form

Using the Fourier ansatz 𝜓 = 𝜓𝑚(𝑠)𝑒𝑖𝜔𝑡+𝑖𝑚𝜙 = 𝜓𝑚(𝑠)𝑒𝜆𝑡+𝑖𝑚𝜙, the streamfunction equation can be
written as an ODE in cylindrical radius 𝑠,

𝜆

[
𝑑

𝑑𝑠

(
𝑠

𝐻

𝑑

𝑑𝑠

)
− 𝑚2

(
1
𝑠𝐻

+ 𝑠

2𝐻3

)]
𝜓𝑚 =

2𝑠
𝐻3 𝑖𝑚𝜓𝑚

𝜔

[
𝑑

𝑑𝑠

(
𝑠

𝐻

𝑑

𝑑𝑠

)
− 𝑚2

(
1
𝑠𝐻

+ 𝑠

2𝐻3

)]
𝜓𝑚 =

2𝑠
𝐻3𝑚𝜓𝑚[

𝑑

𝑑𝑠

(
𝑠

𝐻

𝑑

𝑑𝑠

)
− 𝑚2

(
1
𝑠𝐻

+ 𝑠

2𝐻3

)]
𝜓𝑚 =

2𝑠
𝐻3

𝑚

𝜔
𝜓𝑚,

(1.3)

which can also be cast into the standard form,

𝑑2

𝑑𝑠2𝜓
𝑚 + 1

𝑠𝐻2
𝑑

𝑑𝑠
𝜓𝑚 −

(
𝑚2 (

𝐻2 + 1
)

2𝑠2𝐻2 + 2𝑚
𝜔𝐻2

)
𝜓𝑚 = 0. (1.4)

All coefficients in the standard form are rational forms of cylindrical radius 𝑠. The poles of the coefficients
give the singularities of the equation. These singularities are 𝑠 = 0 (at the axis) and 𝑠 = 1 (𝐻 = 0, at
the equator), and as will be seen in other case studies, these are the same for all cases presented. Note
𝐻 = (1 − 𝑠)1/2(1 + 𝑠)1/2. Therefore, a denominator in the form of 𝑠𝑎𝐻𝑏 produces an 𝑎−th order pole
𝑠 = 0, and an 𝑏

2 -th order pole 𝑠 = 1. An integer 𝑏 that is odd produces an essential singularity at 𝑠 = 1.
Recalling the properties of ODEs, an 𝑛−th order ODE

𝑑𝑛𝑦

𝑑𝑥𝑛
+

𝑛−1∑︁
𝑘=0

𝑎𝑘 (𝑥)
𝑑𝑘𝑦

𝑑𝑥𝑘
= 0

admits regular solutions in the vicinity of 𝑥 = 𝑥0 so long as the following quantities are analytic:

(𝑥 − 𝑥0)𝑘𝑎𝑛−𝑘 (𝑥), 𝑘 = 0, 1, · · · 𝑛 − 1.

In other words, 𝑎𝑛−𝑘 (𝑥) is allowed to have a pole up to the 𝑘−th order. For the second-order ODE above,
𝑎1 has simple poles at 𝑠 = 0 and 𝑠 = 1, and 𝑎0 has a second-order pole at 𝑠 = 0, a simple pole at 𝑠 = 1.
Therefore, all singular points of the coefficients are merely regular singular points of the equation, or
apparent singularities, and the existence of regular solution is guaranteed.
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1.1.3 Analytical solution

The hydrodynamic equation (1.3) has known analytical solutions. The eigenvalues are given by

𝜔𝑚
𝑛 = 𝜔𝑚

𝑛 =
−𝑚

(𝑛 + 1) (2𝑛 + 2𝑚 + 3) + 𝑚
2 + 𝑚2

4

, 𝜓𝑚
𝑛 (𝑠) = 𝑠𝑚𝐻3𝑃

( 3
2 ,𝑚)

𝑛 (2𝑠2 − 1), 𝑛 ∈ Z∗. (1.5)

This is a rare case where the eigenvalue and eigenfunction can be obtained in closed form. These
eigenmodes are the inertial modes. Forming a complete (and orthonormal) set in the appropriate Hilbert
space, they provide a basis for the streamfunction in the columnar ansatz. The current implementation
of the PG model uses these as the radial spectral basis for 𝜓𝑚(𝑠).

The analytical solution also indicates that the linear operator

𝐻3

𝑠

[
𝑑

𝑑𝑠

(
𝑠

𝐻

𝑑

𝑑𝑠

)
− 𝑚2

𝑠𝐻

]
= (1 − 𝑠2) 𝑑

2

𝑑𝑠2 + 1
𝑠

𝑑

𝑑𝑠
− 𝑚2 1 − 𝑠2

𝑠2

has eigenvalues 𝜆′𝑛 = −2(𝑛+1) (2𝑛+2𝑚+3) −𝑚, with corresponding eigenfunctions 𝜓𝑚
𝑛 as stated above.

1.1.4 System spectrum

The problem is solved numerically using the spectral PG code PlesioGeostroPy for several 𝑚.
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Figure 1.1: Eigenperiods for 𝑚 = 3 modes solved using transformed variables and reduced system, with
analytic solutions. Lower panel shows the relative error compared to analytical solutions.

The eigenvalues for 𝑚 = 3 eigenmodes are presented in Fig.(1.1). The quadratures are computed
in double precision, and the matrices are inserted into a double precision eigensolver. Both the results
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of the full system (Transformed variables) and the reduced system are presented. These are both solved
using a truncation level of 50 for the streamfunction 𝜓.

All hydrodynamic eigenmodes, or inertial modes in the PG model, are eastwards modes (Fig.1.2).
As expected from physical arguments, the real parts of the numerically solved eigenvalues are close
to machine precision from zero (Fig.1.2). The very small discrepancy from the analytical values
(unanimously lower than 10−14, lower panel of Fig.1.1) indicates that all 51 eigenvalues are solved
satisfactorily close to machine precision. This is unsurprising since the spectral basis used for the
streamfunction is nothing but the analytical eigenmodes, yielding perfect convergence. For this very
simple problem, there is virtually no difference between the eigenvalues solved using reduced system or
full system, as both are virtually accurate down to machine precision.
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Figure 1.2: Complex spectrum of the 𝑚 = 3 eigenvalues.

Taking a step back, the eigenperiods of the fundamental (𝑛 = 0), 2nd-, 5th- and 9th-order modes
are shown in Fig.(1.3) as a function of azimuthal wavenumber 𝑚. This is basically a reproduction of
Fig.(4.1) in Holdenried-Chernoff (2021) and Fig.(1) in Jackson and Maffei (2020), except the current
plot shows numerically solved eigenperiods, while the plots in the cited ones are probably just analytical
solutions.
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Figure 1.3: Periods as a function of azimuthal wavenumber for different order modes.

There is a discrepancy between the Jackson and Maffei (2020) periods and the Holdenried-Chernoff
(2021) periods. The former one is mostly likely missing a 2𝜋 factor, while the latter one is consistent with
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the numerical results presented here.The shortest eigenperiod is observed in the fundamental mode for
𝑚 = 3, which has a period of circa 26.7 days. The eigenperiods of all azimuthal wavenumbers increase
with higher orders.

1.1.5 Selected eigenmodes

The hydrodynamic eigenmodes are pure and simple. As mentioned, they take the analytical form

𝜓𝑚𝑛 = 𝑠 |𝑚 |𝐻3𝑃
( 3

2 , |𝑚 |)
𝑛 (2𝑠2 − 1) 𝑒𝑖𝑚𝜙 .

Several eigenmodes are visualized and their spectra shown below. For simplicity, only the results solved
using the reduced system are used. However, we have already seen from the eigenvalue comparisons that
the full system yields virtually the same solution, at least in this simple eigenvalue problem.

Figure 1.4: Fundamental (𝑛 = 0) hydrodynamic eigenmode for 𝑚 = 3. The upper panel and the lower
panel show the equatorial (𝑧 = 0) and meridional (𝜙 = 𝜋/4) slices, respectively.
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Figure 1.5: Fundamental 𝑚 = 3 eigenmode streamfunction spectrum at different truncation levels.

The fundamental and the 10-th eigenmode for azimuthal wavenumber 𝑚 = 3 are visualized in
Figs.(1.4) and (1.6), respectively. The visualized amplitude is normalized such that the streamfunction
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𝜓 has amplitude unity in the equatorial plane. Even in the fundamental mode, we see that the azimuthal
velocity near the equator is much stronger than any components anywhere else. This is even more
exaggerated for higher order modes. As a result, the vorticity is also increasingly concentrated near
the equator for higher order modes. Readers who find this result surprising should read section 1.4 of
the Ingredients document, where the analytical bases for velocity components as well as vorticity are
derived. The analytical bases show that higher order basis function for 𝜓 translates to strong azimuthal
velocity and concentrated vorticity at the equator.

Figure 1.6: 10-th hydrodynamic eigenmode for 𝑚 = 3. The upper panel and the lower panel show the
equatorial (𝑧 = 0) and meridional (𝜙 = 𝜋/4) slices, respectively.
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Figure 1.7: 10-th 𝑚 = 3 eigenmode streamfunction spectrum.

As alluded to, the eigenmodes coincide with the spectral basis (or rather the other way around: the
spectral basis comes from the hydrodynamic eigenmodes). This means that the spectrum will contain
only spikes at selected basis, as is the case in Figs.(1.5) and (1.7). The fundamental and 10-th eigenmode
only has nontrivial coefficient corresponding to the 0-th and the 10-th spectral basis, while all other
coefficients are within 5 times machine precision from zero. The result is that the convergence is perfect,
meaning as soon as the necessary basis is included within the truncation level, the problem is exactly
solvable.
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1.2 Ideal eigenmodes under Malkus background field

The background field is given by
B0 = 𝑠ϕ̂

translating to the following background PG quantities:

𝑀𝜙𝜙

0
= 2𝑠2𝐻�𝑧𝑀𝜙𝜙

0
= 𝑠2𝐻2

𝐵0𝑒
𝜙 = 𝑠

𝐵0+
𝜙 = 𝑠

𝐵0−
𝜙 = 𝑠

Ψ0 = 𝑀𝑠𝑠

0
= 𝑀𝑠𝜙

0
= 𝑀𝑠𝑧

0
= 𝑀𝜙𝑧

0
= �𝑧𝑀𝑠𝑠

0
= �𝑧𝑀𝑠𝜙

0
= 0

𝐵0𝑒
𝑠 = 𝐵0𝑒

𝑧 = 𝐵0𝑒
𝑠,𝑧 = 𝐵0𝑒

𝜙,𝑧 = 𝐵0+
𝑠 = 𝐵0+

𝑧 = 𝐵0−
𝑠 = 𝐵0−

𝑧 = 0

(1.6)

1.2.1 Linearized equations

In the Fourier domain (ansatz 𝜓 = 𝜓(𝑠)𝑒𝑖𝜔𝑡+𝑖𝑚𝜙 = 𝜓(𝑠)𝑒𝜆𝑡+𝑖𝑚𝜙), the set of linearized equations under
the Malkus background field reads

𝑖𝜔

[
𝑑

𝑑𝑠

(
𝑠

𝐻

𝑑

𝑑𝑠

)
− 𝑚2

(
1
𝑠𝐻

+ 𝑠

2𝐻3

)]
𝜓 =

2𝑖𝑚𝑠

Le𝐻3𝜓

+ 𝑖𝑚

2𝐻

(
𝑑𝑚𝑠𝑠

𝑑𝑠
−
𝑑𝑚𝜙𝜙

𝑑𝑠

)
+ 𝑖𝑚

2𝑠𝐻
(
𝑚𝑠𝑠 − 𝑚𝜙𝜙

)
− 𝑠

2𝐻
𝑑2𝑚𝑠𝜙

𝑑𝑠2 − 3
2𝐻

𝑑𝑚𝑠𝜙

𝑑𝑠
− 𝑚2

2𝐻𝑠
𝑚𝑠𝜙

− 𝑖𝑚𝑠

2𝐻2
𝑑𝑚𝑠𝑧

𝑑𝑠
+ 𝑚2

2𝐻2𝑚𝜙𝑧 −
𝑖𝑚

2𝐻2𝑚𝑠𝑧 −
𝑖𝑚𝑠2

𝐻2 𝑏𝑒𝜙 − 2𝑠2

𝐻2 𝑏
𝑒
𝑠

− 𝑠3

2𝐻2

(
𝑑𝑏+𝑠
𝑑𝑠

+
𝑑𝑏−𝑠
𝑑𝑠

)
+

(
− 3𝑠2

2𝐻2 − 𝑠4

2𝐻4

) (
𝑏+𝑠 + 𝑏−𝑠

)
− 𝑠2

2𝐻

(
𝑑𝑏+𝑧
𝑑𝑠

−
𝑑𝑏−𝑧
𝑑𝑠

)
− 𝑠

𝐻

(
𝑏+𝑧 − 𝑏−𝑧

)
𝑖𝜔𝑚𝜙𝜙 = −4𝑖𝑚𝑠

𝑑𝜓

𝑑𝑠

𝑖𝜔𝑚𝑠𝜙 = −2𝑚2𝜓

𝑖𝜔𝑚𝜙𝑧 =
𝑚2𝑠

𝐻
𝜓

𝑖𝜔 �𝑧𝑚𝜙𝜙 = −2𝑖𝑚𝑠𝐻
𝑑𝜓

𝑑𝑠

𝑖𝜔�𝑧𝑚𝑠𝜙 = −𝑚2𝐻𝜓

𝑖𝜔𝑏𝑒𝑠 = −𝑚2

𝑠𝐻
𝜓

𝑖𝜔𝑏𝑒𝜙 = − 𝑖𝑚
𝐻

𝑑𝜓

𝑑𝑠

𝑚𝑠𝑠 = �𝑧𝑚𝑠𝑠 = 𝑚𝑠𝑧 = 𝑏𝑒𝑧 = 𝑏𝑒𝑠,𝑧 = 𝑏𝑒𝜙,𝑧 = 0

(1.7)

with induction equations at the boundary given by

𝑖𝜔𝑏+𝑠 = 𝑖𝜔𝑏−𝑠 = −𝑚2

𝑠𝐻
𝜓

𝑖𝜔𝑏+𝜙 = 𝑖𝜔𝑏−𝜙 = − 𝑖𝑚
𝐻

𝑑𝜓

𝑑𝑠

𝑖𝜔𝑏+𝑧 = −𝑖𝜔𝑏−𝑧 = −𝑚2

𝐻2𝜓.

(1.8)
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The induction equations in (1.7) and (1.8) have been validated against and are indeed exactly the same
as those reported in Holdenried-Chernoff (2021). There is no reference for the streamfunction equation,
but its validity can be partially checked when the equation is further reduced into lower dimensions, as
shown in the next subsection.

As a final side remark, note that the boundary magnetic terms in the momentum equation (1.7) either
consist of sums of or differences between the upper boundary and the lower boundary terms, as a result
of the symmetry of the background field with respect to the equatorial plane. The same parity leads
to the boundary terms as dictated by (1.8) to be either odd or even functions. The overall outcome is
that the boundary terms cancel each other out, and have no effects in the system whatsoever. Although
not explicitly pointed out in Holdenried-Chernoff (2021), the original implementation in Mathematica
ignores the contribution of the boundary terms, but nevertheless yields the correct output. This is most
likely due to the fact that the boundary terms play no role anyway in the Malkus model.

1.2.2 Standard ODE form

The Malkus field, despite its complicated momentum equation, has a particularly simple reduced form.
The 2-order form of the dynamical system takes the following form,

𝑖𝜔

(
1 − 𝑚2

𝜔2

) [
𝑑

𝑑𝑠

(
𝑠

𝐻

𝑑

𝑑𝑠

)
− 𝑚2

(
1
𝑠𝐻

+ 𝑠

2𝐻3

)]
𝜓 = 2𝑖

(
𝑚

Le
− 𝑚2

𝜔

)
𝑠

𝐻3𝜓[
𝑑

𝑑𝑠

(
𝑠

𝐻

𝑑

𝑑𝑠

)
− 𝑚2

(
1
𝑠𝐻

+ 𝑠

2𝐻3

)]
𝜓 = 2

1
Le𝑚𝜔 − 𝑚2

𝜔2 − 𝑚2
𝑠

𝐻3𝜓

(1.9)

which only differs from the hydrodynamic case (1.3) by a factor.

𝑑2

𝑑𝑠2𝜓 + 1
𝑠𝐻2

𝑑𝜓

𝑑𝑠
+ 𝑚

𝑚2 − 𝜔2
1

2𝑠2𝐻2

(
4𝜔𝑠2

Le
+ 𝑚(𝑚2 − 𝜔2) (𝑠2 − 2) − 4𝑚𝑠2

)
𝜓 = 0

At the current stage, this form really doesn’t seem to yield more information than the fact that both 𝑠 = 0
and 𝑠 = 1 are regular singularities of the equation, and regular solutions should exist.

1.2.3 Analytical solution

As the ODE in 𝜓 only differs from eq.(1.3) by a factor, the Malkus background field also inherits the
analytical solution from the hydrodynamic case. The analytical eigenvalues are calculated from

1
Le𝑚𝜔 − 𝑚2

𝜔2 − 𝑚2 =
𝑚

𝜔𝑚𝑛
hydro
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1.3 Eigenmodes in the toroidal quadrupolar background field
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1.4 Ideal eigenmodes under poloidal dipolar background field

The background field is given by

B0 = −6𝑠𝑧ŝ + (12𝑠2 + 6𝑧2 − 10)ẑ

which translates to the following background PG quantities

𝑀𝑠𝑠

0
= 24𝐻3𝑠2

𝑀𝑠𝑧

0
= −18𝐻4𝑠 + 2𝐻2

(
−36𝑠3 + 30𝑠

)
�𝑧𝑀𝑠𝑠

0
= 18𝐻4𝑠2

𝐵0𝑒
𝑧 = 12𝑠2 − 10

𝐵0𝑒
𝑠,𝑧 = −6𝑠

𝐵0+
𝑠 = −6𝐻𝑠

𝐵0+
𝑧 = 6𝑠2 − 4

𝐵0−
𝑠 = 6𝐻𝑠

𝐵0−
𝑧 = 6𝑠2 − 4

Ψ0 = 𝑀𝜙𝜙

0
= 𝑀𝑠𝜙

0
= 𝑀𝜙𝑧

0
= �𝑧𝑀𝜙𝜙

0
= �𝑧𝑀𝑠𝜙

0
= 0

𝐵0𝑒
𝑠 = 𝐵0𝑒

𝜙 = 𝐵0𝑒
𝜙,𝑧 = 𝐵0+

𝜙 = 𝐵0−
𝜙 = 0.

(1.10)

1.4.1 Linearized equations

As always, the most complicated part is the streamfunction equation. Under the poloidal dipolar
background field, it takes the form,

𝑖𝜔

[
𝑑

𝑑𝑠

(
𝑠

𝐻

𝑑

𝑑𝑠

)
− 𝑚2

(
1
𝑠𝐻

+ 𝑠

2𝐻3

)]
𝜓 =

2𝑖𝑚𝑠

Le𝐻3𝜓

+ 𝑖𝑚

2𝐻
𝑑𝑚𝑠𝑠

𝑑𝑠
+ 𝑖𝑚

2𝐻𝑠
𝑚𝑠𝑠 −

𝑖𝑚

2𝐻
𝑑𝑚𝜙𝜙

𝑑𝑠
− 𝑖𝑚

2𝐻𝑠
𝑚𝜙𝜙 − 𝑠

2𝐻
𝑑2𝑚𝑠𝜙

𝑑𝑠2 − 3
2𝐻

𝑑𝑚𝑠𝜙

𝑑𝑠
− 𝑚2

2𝑠𝐻
𝑚𝑠𝜙

− 𝑖𝑚𝑠

2𝐻2
𝑑𝑚𝑠𝑧

𝑑𝑠
− 𝑖𝑚

2𝐻2𝑚𝑠𝑧 +
𝑚2

2𝐻2𝑚𝜙𝑧 + 4𝑖𝑚𝑠
6𝑠2 − 5
𝐻2 𝑏𝑒𝑧 − 2𝑠2 6𝑠2 − 5

𝐻2 𝑏𝑒𝜙,𝑧

+ 2𝑠
𝐻

(
𝑑𝑏+

𝜙

𝑑𝑠
−
𝑑𝑏−

𝜙

𝑑𝑠

)
+ 2
𝐻

(
𝑏+𝜙 − 𝑏−𝜙

)
+ 𝑖𝑚𝑠

𝐻2

(
𝑏+𝑧 + 𝑏−𝑧

)
+
𝑖𝑚

(
𝑠2 − 2

)
𝐻3

(
𝑏+𝑠 − 𝑏−𝑠

)
.

(1.11)
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The magnetic quantities are described by the induction equations in the PG model, which are given by

𝑖𝜔𝑚𝑠𝑠 = 𝑖48𝑚
[
𝑠𝐻2 𝑑𝜓

𝑑𝑠
+

(
4𝑠2 − 2

)
𝜓

]
𝑖𝜔𝑚𝑠𝜙 = 24

[
−𝑠2𝐻2 𝑑

2𝜓

𝑑𝑠2 + 𝑠

(
1 − 2𝑠2

) 𝑑𝜓

𝑑𝑠

]
𝑖𝜔𝑚𝑠𝑧 = 𝑖6𝑚

[
12𝑠4 − 19𝑠2 + 7

𝐻

𝑑𝜓

𝑑𝑠
− 54𝑠4 − 57𝑠2 + 14

𝑠𝐻
𝜓

]
𝑖𝜔𝑚𝜙𝑧 = 6

[
𝑠𝐻

(
9𝑠2 − 7

) 𝑑2𝜓

𝑑𝑠2 + 1
𝐻

(
2𝑠2 − 1

) (
9𝑠2 − 7

) 𝑑𝜓

𝑑𝑠

]
𝑖𝜔�𝑧𝑚𝑠𝑠 = 𝑖36𝑚

[
𝑠𝐻3 𝑑𝜓

𝑑𝑠
+ 2𝐻

(
2𝑠2 − 1

)
𝜓

]
𝑖𝜔�𝑧𝑚𝑠𝜙 = 18

[
−𝑠2𝐻3 𝑑

2𝜓

𝑑𝑠2 + 𝑠𝐻

(
1 − 2𝑠2

) 𝑑𝜓

𝑑𝑠

]
𝑖𝜔𝑏𝑒𝑧 = 𝑖2𝑚

6𝑠2 − 7
𝐻3 𝜓

𝑖𝜔𝑏𝑒𝑠,𝑧 = 𝑖6𝑚
[
− 1
𝐻

𝑑𝜓

𝑑𝑠
+ 2(1 − 2𝑠2)

𝑠𝐻3 𝜓

]
𝑖𝜔𝑏𝑒𝜙,𝑧 = 6

[
𝑠

𝐻

𝑑2𝜓

𝑑𝑠2 + 2𝑠2 − 1
𝐻3

𝑑𝜓

𝑑𝑠

]
𝑚𝜙𝜙 = �𝑧𝑚𝜙𝜙 = 𝑏𝑒𝑠 = 𝑏𝑒𝜙 = 0

(1.12)

All the PG induction equations are validated against and are exactly the same as in Holdenried-Chernoff
(2021). In contrast, the boundary induction equations are given as follows

𝑖𝜔𝑏+𝑠 = −𝑖𝜔𝑏−𝑠 = 𝑖6𝑚
[
−𝑑𝜓

𝑑𝑠
+ 2(1 − 2𝑠2)

𝑠𝐻2 𝜓

]
,

𝑖𝜔𝑏+𝜙 = −𝑖𝜔𝑏−𝜙 = 6
[
𝑠
𝑑2𝜓

𝑑𝑠2 + 2𝑠2 − 1
𝐻2

𝑑𝜓

𝑑𝑠

]
,

𝑖𝜔𝑏+𝑧 = 𝑖𝜔𝑏−𝑧 = 𝑖2𝑚
[
3𝑠
𝐻

𝑑𝜓

𝑑𝑠
+ 4(3𝑠2 − 1)

𝐻3 𝜓

]
.

(1.13)

While the meridional components 𝑏±𝑠 and 𝑏±𝑧 share the same expression as in Holdenried-Chernoff (2021),
the azimuthal components 𝑏±

𝜙
are not mentioned in the previous work. It is unclear what argument was

made to ignore this boundary term, but the calculation here seems to suggest that this component is
however not trivial. Is this used or not in the previously obtained results? This is a question that only the
original author can answer.

We see that contrary to the boundary fields for Malkus field, the boundary fields for the poloidal
dipolar background field has another parity. The equatorial components 𝑏𝑠 and 𝑏𝜙 are opposite at the
upper and the lower boundary, while the vertical component 𝑏𝑧 matches. This means that the boundary
terms in (1.11) do not cancel out like they do in (1.7), and thus boundary terms do matter.

1.4.2 Standard ODE form

To check the regularity of the system, we form the standard ODE of 𝜓 as a function of 𝑠 by merging the
PG equations and boundary induction equations into one single ODE (1.14). The standard form is a 4-th
order system in 𝜓. The singularities of the equations are 𝑠 = 0, i.e. at the axis, and 𝐻 = 0 (𝑠 = 1), i.e. at
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the equator. The singularities of the coefficients are analyzed below.

𝑑4𝜓

𝑑𝑠4 + 8 − 9𝑠2

𝑠𝐻2
𝑑3𝜓

𝑑𝑠3

+
(

𝜔2

12𝐻2𝑠2 +
−𝑚2 (

𝑠4 − 5𝑠2 + 4
)
− 16𝑠2 + 20

4𝑠2𝐻4

)
𝑑2𝜓

𝑑𝑠2

+
(

𝜔2

12𝑠3𝐻4 +
−𝑚2 (

𝑠6 − 2𝑠4 − 2𝑠2 + 3
)
+ 18𝑠6 − 51𝑠4 + 41𝑠2 − 5

𝑠3𝐻6

)
𝑑𝜓

𝑑𝑠

+
(
𝜔2𝑚2 (

𝑠2 − 2
)

24𝑠4𝐻4 − 1
Le

𝜔𝑚

6𝑠2𝐻4 −
𝑚2 ·

(
30𝑠6 − 127𝑠4 + 156𝑠2 − 32

)
4𝑠4𝐻6

)
𝜓 = 0

(1.14)

The 3-rd order term has a simple pole at 𝑠 = 0 and a simple pole at 𝑠 = 1;
The 2-nd order term has a 2-nd order pole at 𝑠 = 0 and a 2-nd order pole at 𝑠 = 1;
The 1-st order term has a 3-rd order pole at 𝑠 = 0 and a 3-rd order pole at 𝑠 = 1;
The 0-th order term has a 4-th order pole at 𝑠 = 0 and a 3-rd order pole at 𝑠 = 1.
The overall conclusion is that the singularities of the equation are both regular singularities, so regular

solutions should exist. However, singularity aside, these coefficients differ from the ones as provided in
Holdenried-Chernoff (2021). Some coefficients are the same, but not all. Recalling that in the previous
work, the 𝑏±

𝜙
may be ignored, I tried to remove these equations before assembling the 2-nd order ODE.

The result is as follows

𝑑4𝜓

𝑑𝑠4 + 6 − 9𝑠2

𝑠𝐻2
𝑑3𝜓

𝑑𝑠3

+
(

𝜔2

12𝑠2𝐻2 +
𝑚2 (

−𝑠4 + 5𝑠2 − 4
)
− 16𝑠2 + 12

4𝑠2𝐻4

)
𝑑2𝜓

𝑑𝑠2

+
(

𝜔2

12𝑠3𝐻4 +
−𝑚2 (

𝑠6 − 2𝑠4 − 2𝑠2 + 3
)
+ 18𝑠6 − 47𝑠4 + 31𝑠2 − 3

𝑠3𝐻6

)
𝑑𝜓

𝑑𝑠

+
(
𝜔2𝑚2 (

𝑠2 − 2
)

24𝑠4𝐻4 − 1
Le

𝜔𝑚

6𝑠2𝐻4 −
𝑚2 ·

(
30𝑠6 − 127𝑠4 + 156𝑠2 − 32

)
4𝑠4𝐻6

)
𝜓 = 0

(1.15)

Now the first three coefficients all match with Holdenried-Chernoff (2021). However, the coefficients of
the lowest two order terms still do not match. The only difference, as it seems, lies in the terms containing
𝑚2 in these coefficients. It does not seem to be possible to tell the right from wrong here, so a thorough
symbolic re-analysis seems necessary.

One notable feature that might aid debugging is that according to the equations presented here, there
aren’t even terms that can give 𝑠7 on the numerator. However, both discrepant coefficients contain 𝑠7𝑚2

terms in Holdenried-Chernoff (2021). "Dimension" analysis of the streamfunction equation (1.11) seems
to indicate that such a high degree is not possible. If something is wrong with the derivation, the mistake
may have already occurred at eq.(1.11). Understanding how this 𝑠7 term comes about might be a key to
finding out potential errors.
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