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Chapter 1

Theory and governing equations

1.1 Spherical-cylindrical transformation

Spherical coordinates and cylindrical coordinates can be transformed to one another via

©­«
𝑠

𝜙

𝑧

ª®¬ =
©­«
𝑟 sin 𝜃
𝜙

𝑟 cos 𝜃

ª®¬ , ©­«
𝑟

𝜃

𝜙

ª®¬ =
©­­«

√
𝑠2 + 𝑧2

arccos 𝑧√
𝑠2+𝑧2

𝜙

ª®®¬ (1.1)

The vector components are converted using the rotation matrix

©­«
𝐴𝑠

𝐴𝜙

𝐴𝑧

ª®¬ = R ©­«
𝐴𝑟
𝐴𝜃

𝐴𝜙

ª®¬ , ©­«
𝐴𝑟
𝐴𝜃

𝐴𝜙

ª®¬ = R𝑇 ©­«
𝐴𝑠

𝐴𝜙

𝐴𝑧

ª®¬ (1.2)

where the rotation matrix is an orthogonal matrix

R =
©­«
sin 𝜃 cos 𝜃 0

0 0 1
cos 𝜃 − sin 𝜃 0

ª®¬ =

©­­­«
𝑠√

𝑠2+𝑧2
𝑧√

𝑠2+𝑧2
0

0 0 1
𝑧√

𝑠2+𝑧2
− 𝑠√

𝑠2+𝑧2
0

ª®®®¬ . (1.3)

The Jacobian from spherical to cylindrical coordinates and its inverse, i.e. the Jacobian from cylindrical
to spherical coordinates are given by

J =
𝜕 (𝑠, 𝜙, 𝑧)
𝜕 (𝑟, 𝜃, 𝜙) =

©­«
sin 𝜃 𝑟 cos 𝜃 0

0 0 1
cos 𝜃 −𝑟 sin 𝜃 0

ª®¬ =

©­­­«
𝑠√

𝑠2+𝑧2
𝑧 0

0 0 1
𝑧√

𝑠2+𝑧2
−𝑠 0

ª®®®¬ ,
J−1 =

𝜕 (𝑟, 𝜃, 𝜙)
𝜕 (𝑠, 𝜙, 𝑧) =

©­«
sin 𝜃 0 cos 𝜃

𝑟−1 cos 𝜃 0 −𝑟−1 sin 𝜃
0 1 0

ª®¬ =
©­­«

𝑠√
𝑠2+𝑧2

0 𝑧√
𝑠2+𝑧2

𝑧

𝑠2+𝑧2 0 − 𝑠

𝑠2+𝑧2

0 1 0

ª®®¬ .
(1.4)

The derivatives in spherical harmonics are transformed into derivatives in cylindrical coordinates via

©­«
𝜕𝑟
𝜕𝜃
𝜕𝜙

ª®¬ =
𝜕 (𝑠, 𝜙, 𝑧)
𝜕 (𝑟, 𝜃, 𝜙)

𝑇 ©­«
𝜕𝑠
𝜕𝜙
𝜕𝑧

ª®¬ =
©­«

sin 𝜃 0 cos 𝜃
𝑟 cos 𝜃 0 −𝑟 sin 𝜃

0 1 0

ª®¬ ©­«
𝜕𝑠
𝜕𝜙
𝜕𝑧

ª®¬ =
©­­«

𝑠√
𝑠2+𝑧2

0 𝑧√
𝑠2+𝑧2

𝑧 0 −𝑠
0 1 0

ª®®¬
©­«
𝜕𝑠
𝜕𝜙
𝜕𝑧

ª®¬ (1.5)

where the matrix elements are already changed to cylindrical coordinates. Inversely, we have

©­«
𝜕𝑠
𝜕𝜙
𝜕𝑧

ª®¬ =
𝜕 (𝑟, 𝜃, 𝜙)
𝜕 (𝑠, 𝜙, 𝑧)

𝑇 ©­«
𝜕𝑟
𝜕𝜃
𝜕𝜙

ª®¬ =
©­«
sin 𝜃 1

𝑟
cos 𝜃 0

0 0 1
cos 𝜃 − 1

𝑟
sin 𝜃 0

ª®¬ ©­«
𝜕𝑟
𝜕𝜃
𝜕𝜙

ª®¬ =

©­­­«
𝑠√

𝑠2+𝑧2
𝑧

𝑠2+𝑧2 0

0 0 1
𝑧√

𝑠2+𝑧2
− 𝑠

𝑠2+𝑧2 0

ª®®®¬
©­«
𝜕𝑟
𝜕𝜃
𝜕𝜙

ª®¬ (1.6)
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where the matrix elements in spherical coordinates are also shown.

1.2 Streamfunction equation

In this section I derive an alternative form of the streamfunction equation, which is the starting point of
some eigenvalue problems. Starting from the dimensionless form of the streamfunction equation, we
have

−2∇2
𝑒

𝜕𝜓

𝜕𝑡
=
𝑑𝐻

𝑑𝑠

(
4
𝑠𝐻

𝜕𝜓

𝜕𝜙
− 2
𝐻

𝜕

𝜕𝑠

𝜕𝜓

𝜕𝑡
− 1
𝑠𝐻

𝜕2

𝜕𝜙2
𝜕𝜓

𝜕𝑡

)
− 𝑑𝐻

𝑑𝑠

(
2 𝑓 𝑒𝜙 + 1

𝑠

𝜕 𝑓̃𝑧

𝜕𝜙

)
+ ẑ · ∇ × f𝑒 . (1.7)

The superscript 𝑒 means the field is evaluated on the equatorial plane. Here we used the dimensionless
form as in Jackson and Maffei (2020), where the characteristic time scale is chosen to be the rotation time
scale Ω−1 (the "inertial time scale"), instead of the Alfvén time scale 𝐿/𝑉𝐴, as in Holdenried-Chernoff
(2021). The force f contains all the external forces on the right-hand-side of the Navier-Stokes equation,
e.g. Lorentz force, viscous force, buoyancy, etc. For the eigenvalue problem, it is convenient to move
the terms involving all the time derivatives to one side,[

−2∇2
𝑒 +

𝑑𝐻

𝑑𝑠

(
2
𝐻

𝜕

𝜕𝑠
+ 1
𝑠𝐻

𝜕2

𝜕𝜙2

)]
𝜕𝜓

𝜕𝑡
=

4
𝑠𝐻

𝑑𝐻

𝑑𝑠

𝜕𝜓

𝜕𝜙
− 𝑑𝐻

𝑑𝑠

(
2 𝑓 𝑒𝜙 + 1

𝑠

𝜕 𝑓̃𝑧

𝜕𝜙

)
+ ẑ · ∇ × f𝑒[

−1
𝑠

𝜕

𝜕𝑠

(
𝑠
𝜕

𝜕𝑠

)
+ 1
𝐻

𝑑𝐻

𝑑𝑠

𝜕

𝜕𝑠
+

(
1

2𝑠𝐻
𝑑𝐻

𝑑𝑠
− 1
𝑠2

)
𝜕2

𝜕𝜙2

]
𝜕𝜓

𝜕𝑡
=

2
𝑠𝐻

𝑑𝐻

𝑑𝑠

𝜕𝜓

𝜕𝜙
− 𝑑𝐻

𝑑𝑠

(
𝑓 𝑒𝜙 + 1

2𝑠
𝜕 𝑓̃𝑧

𝜕𝜙

)
+ ẑ

2
· ∇ × f𝑒

In cases where different azimuthal wavenumber separates (e.g. when the system has rotational invariance
with respect to 𝜙), this equation will be readily converted to an ordinary differential equation (ODE) in
𝑠. In this case, it would be desirable to write the differential operators concerning 𝑠 in the self-adjoint
form 𝑑

𝑑𝑠
(𝑝(𝑠) 𝑑

𝑑𝑠
), to form a standard Sturm-Liouville problem,

−1
𝑠

𝜕

𝜕𝑠

(
𝑠
𝜕

𝜕𝑠

)
+ 1
𝐻

𝑑𝐻

𝑑𝑠

𝜕

𝜕𝑠
= − 𝜕2

𝜕𝑠2
−

(
1
𝑠
− 1
𝐻

𝑑𝐻

𝑑𝑠

)
𝜕

𝜕𝑠

and we can deduce the term 𝑝(𝑥) using the relation

1
𝑝(𝑠)

𝑑𝑝(𝑠)
𝑑𝑠

=
1
𝑠
− 1
𝐻

𝑑𝐻

𝑑𝑠
=⇒ 𝑑 ln 𝑝 = 𝑑 ln 𝑠 − 𝑑 ln𝐻 = 𝑑 ln

𝑠

𝐻
=⇒ 𝑝 =

𝑠

𝐻
.

And the original equation can be rewritten as[
𝜕

𝜕𝑠

(
𝑠

𝐻

𝜕

𝜕𝑠

)
+

(
1
𝑠𝐻

− 1
2𝐻2

𝑑𝐻

𝑑𝑠

)
𝜕2

𝜕𝜙2

]
𝜕𝜓

𝜕𝑡
= − 2

𝐻2
𝑑𝐻

𝑑𝑠

𝜕𝜓

𝜕𝜙
+ 𝑑𝐻
𝑑𝑠

(
𝑠

𝐻
𝑓 𝑒𝜙 + 1

2𝐻
𝜕 𝑓̃𝑧

𝜕𝜙

)
− 𝑠

2𝐻
ẑ ·∇×f𝑒 (1.8)

1.3 Conversion between the two dimensionless forms

The dimensionless forms are derived almost unanimously using the following characteristic length scales
and characteristic time scales,

𝐿 = 𝑟0, 𝜏 ∼ 𝐿

𝑈
.

The difference lies in the choice of characteristic velocity scale (which also determines the time scale).
Holdenried-Chernoff (2021) uses the Alfven wave velocity

𝑈 = 𝑉𝐴 =
ℬ

√
𝜌0𝜇0
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as the characteristic velocity scale. This scale is ultimately determined by the characteristic magnetic
field strength ℬ. The relative strength of Lorentz force to Coriolis is given by the Lehnert number,

Le =
ℬ

√
𝜌0𝜇0Ω𝐿

=
𝑉𝐴

𝑉Ω

where 𝑉Ω = Ω𝐿 is the rotation speed. In other words, the characteristic scales for the magnetic field and
the spin rate are linked via this dimensionless number. The dimensionless Navier-Stokes equation takes
the form

𝜕u
𝜕𝑡

+ u · ∇u + 2
Le

ẑ × u = −∇𝑝 + (∇ × B) × B

and the streamfunction equation is

−2∇2
𝑒

𝜕𝜓

𝜕𝑡
=
𝑑𝐻

𝑑𝑠

(
Le−1 4

𝑠𝐻

𝜕𝜓

𝜕𝜙
− 2
𝐻

𝜕

𝜕𝑠

𝜕𝜓

𝜕𝑡
− 1
𝑠𝐻

𝜕2

𝜕𝜙2
𝜕𝜓

𝜕𝑡

)
− 𝑑𝐻

𝑑𝑠

(
2 𝑓𝑒𝜙 + 1

𝑠

𝜕 𝑓̃𝜙

𝜕𝜙

)
+ ẑ · ∇ × f𝑒[

𝜕

𝜕𝑠

(
𝑠

𝐻

𝜕

𝜕𝑠

)
+

(
1
𝑠𝐻

− 1
2𝐻2

𝑑𝐻

𝑑𝑠

)
𝜕2

𝜕𝜙2

]
𝜕𝜓

𝜕𝑡
= −Le−1 2

𝐻2
𝑑𝐻

𝑑𝑠

𝜕𝜓

𝜕𝜙
+ 𝑑𝐻
𝑑𝑠

(
𝑠

𝐻
𝑓 𝑒𝜙 + 1

2𝐻
𝜕 𝑓̃𝑧

𝜕𝜙

)
− 𝑠

2𝐻
ẑ · ∇ × f𝑒

In constrast, Jackson and Maffei (2020) uses

𝑈 = Ω𝐿

as the characteristic velocity, which is particularly useful when the magnetic field is absent. Now it is
necessary to nondimensionalize the Lorentz force. While Jackson and Maffei (2020) usesℬ =

√
𝜌0𝜇0Ω𝐿,

meaning Le = 1 in the paper, it lacks flexibility. Instead, we can still use Lehnert number, in which case
the Navier-Stokes equation takes the form

𝜕u
𝜕𝑡

+ u · ∇u + 2ẑ × u = −∇𝑝 + Le2(∇ × B) × B

and the streamfunction equation is

−2∇2
𝑒

𝜕𝜓

𝜕𝑡
=
𝑑𝐻

𝑑𝑠

(
4
𝑠𝐻

𝜕𝜓

𝜕𝜙
− 2
𝐻

𝜕

𝜕𝑠

𝜕𝜓

𝜕𝑡
− 1
𝑠𝐻

𝜕2

𝜕𝜙2
𝜕𝜓

𝜕𝑡

)
− Le2

[
𝑑𝐻

𝑑𝑠

(
2 𝑓𝑒𝜙 + 1

𝑠

𝜕 𝑓̃𝜙

𝜕𝜙

)
+ ẑ · ∇ × f𝑒

]
[
𝜕

𝜕𝑠

(
𝑠

𝐻

𝜕

𝜕𝑠

)
+

(
1
𝑠𝐻

− 1
2𝐻2

𝑑𝐻

𝑑𝑠

)
𝜕2

𝜕𝜙2

]
𝜕𝜓

𝜕𝑡
= − 2

𝐻2
𝑑𝐻

𝑑𝑠

𝜕𝜓

𝜕𝜙
+ Le2

[
𝑑𝐻

𝑑𝑠

(
𝑠

𝐻
𝑓 𝑒𝜙 + 1

2𝐻
𝜕 𝑓̃𝑧

𝜕𝜙

)
− 𝑠

2𝐻
ẑ · ∇ × f𝑒

]
The variables solved in two dimensionless forms can be easily converted to one another,

uΩ =
u𝐴

Ω𝐿

ℬ
√
𝜌0𝜇0

= Le u𝐴, 𝑡Ω = Ω

√
𝜌0𝜇0𝐿

ℬ
𝑡𝐴 =

𝑡𝐴

Le
, BΩ = B𝐴.

Here the 𝐴 and Ω subscripts indicate dimensionless fields in the equations nondimensionalized us-
ing Alfven wave velocity and rotation velocity, respectively. Finally, for the eigenvalue problem, the
eigenvalues solved follow the following relation, inverse to 𝑡:

𝜔Ω =
ℬ

√
𝜌0𝜇0Ω𝐿

𝜔𝐴 = Le𝜔𝐴.

1.4 Velocity components, vorticity and their bases

I sometimes refer to the streamfunction equation as the vorticity equation. It may be an abuse of terminol-
ogy but is somewhat justified as the streamfunction equation is derived from the axial vorticity equation.
Either way, the columnar ansatz dictates that the streamfunction has a one-to-one correspondence with

3



the velocity components and vorticity. It follows that the bases we use for the streamfunction also induces
the bases for the velocity components and vorticity.

We start by looking at the explicit expressions for velocity. The quasi-geostrophic ansatz gives

𝑢𝑠 =
1
𝑠𝐻

𝜕𝜓

𝜕𝜙
, 𝑢𝜙 = − 1

𝐻

𝜕𝜓

𝜕𝑠
, 𝑢𝑧 =

𝑧

𝑠𝐻2
𝑑𝐻

𝑑𝑠

𝜕𝜓

𝜕𝜙
. (1.9)

The axial vorticity is expressed as

𝜁 = ẑ · ∇ × u = ẑ · ∇𝑒 × u𝑒 = ẑ · ∇𝑒 ×
(

1
𝐻
∇𝑒 × 𝜓ẑ

)
= ẑ ·

(
∇𝑒

1
𝐻

× (∇𝑒𝜓 × ẑ) + 1
𝐻
∇𝑒 × (∇𝑒𝜓 × ẑ)

)
= ẑ ·

(
− 1
𝐻2

𝑑𝐻

𝑑𝑠
ŝ ×

(
−𝜕𝜓
𝜕𝑠

ϕ̂ + 1
𝑠

𝜕𝜓

𝜕𝜙
ŝ
)
+ 1
𝐻
∇𝑒 ×

(
−𝜕𝜓
𝜕𝑠

ϕ̂ + 1
𝑠

𝜕𝜓

𝜕𝜙
ŝ
))

= ẑ ·
(

1
𝐻2

𝑑𝐻

𝑑𝑠

𝜕𝜓

𝜕𝑠
ẑ + ẑ

𝐻

(
−1
𝑠

𝜕

𝜕𝑠

(
𝑠
𝜕𝜓

𝜕𝑠

)
− 1
𝑠2
𝜕2𝜓

𝜕𝜙2

))
= −1

𝑠

(
1
𝐻

𝜕

𝜕𝑠

(
𝑠
𝜕𝜓

𝜕𝑠

)
− 1
𝐻2

𝑑𝐻

𝑑𝑠

𝜕𝜓

𝜕𝑠
+ 1
𝑠𝐻

𝜕2𝜓

𝜕𝜙2

)
𝜁 = −1

𝑠

[
𝜕

𝜕𝑠

(
𝑠

𝐻

𝜕

𝜕𝑠

)
+ 1
𝑠𝐻

𝜕2

𝜕𝜙2

]
𝜓

(1.10)

The axial vorticity proves just a scaled version of the first two terms of (1.8), which comes as no surprise,
because the original streamfunction equation involves taking the axial vorticity. Now we are ready to
derive the bases for these quantities. We first consider the general Fourier expansion of the streamfunction

𝜓(𝑠, 𝜙, 𝑡) =
∑︁
𝑚,𝑛

𝐶𝑚𝑛
𝜓 (𝑡) 𝜓𝑚𝑛 (𝑠) 𝑒𝑖𝑚𝜙

where 𝐶𝑚𝑛 is the coefficient that varies with time, 𝜓𝑚𝑛 (𝑠) is the radial basis and 𝑒𝑖𝑚𝜙 is of course the
Fourier basis for the azimuth. Consequently, the velocity field and the axial vorticity are expressed as

𝑢𝑠 =
∑︁
𝑚,𝑛

𝐶𝑚𝑛
𝜓 (𝑡)

[
𝑖𝑚

𝑠𝐻
𝜓𝑚𝑛 (𝑠)

]
𝑒𝑖𝑚𝜙,

𝑢𝜙 =
∑︁
𝑚,𝑛

𝐶𝑚𝑛
𝜓 (𝑡)

[
− 1
𝐻

𝑑𝜓𝑚𝑛 (𝑠)
𝑑𝑠

]
𝑒𝑖𝑚𝜙,

𝑢𝑧 =
∑︁
𝑚,𝑛

𝐶𝑚𝑛
𝜓 (𝑡)

[
𝑖𝑚𝑧

𝑠𝐻2
𝑑𝐻

𝑑𝑠
𝜓𝑚𝑛 (𝑠)

]
𝑒𝑖𝑚𝜙,

𝜁 =
∑︁
𝑚,𝑛

𝐶𝑚𝑛
𝜓 (𝑡)

[
−1
𝑠

𝑑

𝑑𝑠

(
𝑠

𝐻

𝑑𝜓𝑚𝑛 (𝑠)
𝑑𝑠

)
+ 𝑚

2

𝑠𝐻
𝜓𝑚𝑛 (𝑠)

]
𝑒𝑖𝑚𝜙 .

(1.11)

We see that these fields share the same coefficients and azimuthal bases (naturally, as we are always using
Fourier series) as the streamfunction, but with modified radial bases, given in the square brackets. These
bases will be referred to as 𝑢𝑚𝑛

𝑠 , 𝑢𝑚𝑛
𝜙

, 𝑢𝑚𝑛
𝑧 and 𝜁𝑚𝑛, respectively. In a full sphere where 𝐻 =

√
1 − 𝑠2,

we know that the hydrodynamic system has the inertial modes described by streamfunction

𝜓𝑛𝑚
inertial = 𝑠

|𝑚 |𝐻3𝑃
( 3

2 , |𝑚 | )
𝑛 (2𝑠2 − 1) 𝑒𝑖𝑚𝜙 .

The radial bases here form a complete orthogonal basis in the inner product space of analytic functions
with prefactors 𝑠 |𝑚 |𝐻3 within interval [0, 1] with weight function 1. The prefactor 𝑠 |𝑚 | is necessary for
the scalar to be regular (see chapter 2), and the prefactor 𝐻3 is necessary for the underlying velocity field
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to be regular. This has been since used as the basis for the spectral expansion of the streamfunction.
Following this basis, the corresponding velocity radial basis takes the form

𝑢𝑚𝑛
𝑠 (𝑠) = 𝑖𝑚

𝑠𝐻
𝜓𝑚𝑛 (𝑠) = 𝑖𝑚𝑠 |𝑚 |−1𝐻2𝑃

( 3
2 , |𝑚 | )

𝑛 (2𝑠2 − 1),

𝑢𝑚𝑛
𝜙 (𝑠) = − 1

𝐻

𝑑𝜓𝑚𝑛 (𝑠)
𝑑𝑠

= −
(
𝑠 |𝑚 |𝐻2 𝑑

𝑑𝑠
+ |𝑚 |𝑠 |𝑚 |−1𝐻2 + 3𝑠 |𝑚 |𝐻

𝑑𝐻

𝑑𝑠

)
𝑃
( 3

2 , |𝑚 | )
𝑛 (2𝑠2 − 1)

= −𝑠 |𝑚 |−1
(
𝑠𝐻2 𝑑

𝑑𝑠
+ |𝑚 |𝐻2 − 3𝑠2

)
𝑃
( 3

2 , |𝑚 | )
𝑛 (2𝑠2 − 1)

= 𝑠 |𝑚 |−1
(
3𝑠2 − |𝑚 |𝐻2

)
𝑃
( 3

2 , |𝑚 | )
𝑛 (2𝑠2 − 1) − 𝑠 |𝑚 |+1𝐻2

(
𝑛 + |𝑚 | + 5

2

)
𝑃

5
2 , |𝑚 |+1
𝑛−1 (2𝑠2 − 1),

𝑢𝑚𝑛
𝑧 (𝑠) = 𝑖𝑚𝑧

𝑠𝐻2
𝑑𝐻

𝑑𝑠
𝜓𝑚𝑛 (𝑠) = −𝑖𝑚𝑧𝑠 |𝑚 |𝑃

( 3
2 , |𝑚 | )

𝑛 (2𝑠2 − 1).

(1.12)

The situation with the axial vorticity is slightly more complicated. Instead of plugging in directly the
expression, we observe that the radial streamfunction basis is the solution to the following equation,[

𝑑

𝑑𝑠

(
𝑠

𝐻

𝑑

𝑑𝑠

)
− 𝑚2

𝑠𝐻
− 𝑚2𝑠

2𝐻3

]
𝜓𝑚𝑛

inertial(𝑠) =
2𝑠
𝐻3

𝑚

𝜔𝑚𝑛
𝜓

𝜓𝑚𝑛
inertial(𝑠)

where 𝜔𝑚𝑛
𝜓

is the eigenfrequency of the inertial mode in the PG model. This gives us the relation,

𝜁𝑚𝑛 (𝑠) = −1
𝑠

[
𝑑

𝑑𝑠

(
𝑠

𝐻

𝑑

𝑑𝑠

)
− 𝑚2

𝑠𝐻

]
𝜓𝑚𝑛

inertial(𝑠)

=

(
−2

𝑚

𝜔𝑚𝑛
𝜓

− 𝑚2

2

)
1
𝐻3𝜓

𝑚𝑛
inertial(𝑠)

= (2(𝑛 + 1) (2𝑛 + 2𝑚 + 3) + 𝑚) 1
𝐻3𝜓

𝑚𝑛
inertial(𝑠)

= (2(𝑛 + 1) (2𝑛 + 2𝑚 + 3) + 𝑚) 𝑠 |𝑚 |𝑃
( 3

2 , |𝑚 | )
𝑛 (2𝑠2 − 1).

(1.13)

The behaviour of these bases will be illustrated in two approaches. First, we can analyze the asymptotic
behaviour near the equator by plugging in 𝑠2 = 1 − 𝐻2 and taking 𝐻 to approach zero. This gives

𝑢𝑚𝑛
𝑠 (𝑠) = 𝑖𝑚𝐻2𝑃

( 3
2 , |𝑚 | )

𝑛 (1 − 2𝐻2) +𝑂 (𝐻4),

𝑢𝑚𝑛
𝜙 (𝑠) = 3𝑃 ( 3

2 , |𝑚 | )
𝑛 (1 − 2𝐻2) +𝑂 (𝐻2),

𝑢𝑚𝑛
𝑧 (𝑠) = −𝑖𝑚𝑧𝑃 ( 3

2 , |𝑚 | )
𝑛 (1 − 2𝐻2),

𝜁𝑚𝑛 (𝑠) = (2(𝑛 + 1) (2𝑛 + 2𝑚 + 3) + 𝑚) 𝑃 ( 3
2 , |𝑚 | )

𝑛 (1 − 2𝐻2) +𝑂 (𝐻2),

As seen from here, the basis for 𝑢𝑠 automatically vanishes at 𝑠 = 1 (as it should). This is not the case
with azimuthal velocity or vorticity, whose limits at 𝐻 → 0 are given by

𝑢𝑚𝑛
𝜙 (𝑠) |𝑠→1 = 3𝑃 ( 3

2 , |𝑚 | )
𝑛 (1) = 3

(
𝑛 + 3

2
𝑛

)
,

𝜁𝑚𝑛 (𝑠) |𝑠→1 = (2(𝑛 + 1) (2𝑛 + 2𝑚 + 3) + 𝑚) 𝑃 ( 3
2 , |𝑚 | )

𝑛 (1)

= (2(𝑛 + 1) (2𝑛 + 2𝑚 + 3) + 𝑚)
(
𝑛 + 3

2
𝑛

)
respectively. Not only do they not vanish at 𝑠 = 1, but these values grow algebraically with degree 𝑛 as one
goes to higher degrees of Jacobi polynomials. (Note: use the asymptotic formula ( 𝑛+𝛼𝑛 ) ∼ 𝑛𝛼/Γ(𝛼 + 1),
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see wikipedia page for binomial coefficients) Considering that Jacobi polynomials also tend to have
large values at boundaries, the basis functions for the azimuthal velocity and vorticity are increasingly
concentrated at the boundary rather than the bulk with increasing degrees.

As a second approach, we present here the first, third, fifth and tenth radial basis function for the
streamfunction, the radial and azimuthal velocity, and the vorticity, at azimuthal wavenumber 𝑚 = 3
(Fig.1.1). This illustrates the large amplitudes of 𝑢𝑚𝑛

𝜙
and 𝜁𝑚𝑛 near the boundary. As a result, eigenmodes

that consist of only one of this basis (e.g. inertial modes, magnetic eigenmodes with Malkus background
fields, etc.) will inherit this feature that the azimuthal velocity at the boundary is much larger than that in
the bulk or the radial velocity anywhere in the system, and the vorticity is concentrated at the boundary.

1.5 Induction equation at the boundary

Induction equation for the radial component at the boundary

𝜕𝐵𝑟

𝜕𝑡
= −∇𝐻 · (u𝐻𝐵𝑟 ) (1.14)

which can be expanded in spherical coordinates

𝜕𝐵𝑟

𝜕𝑡
= − 1

sin 𝜃

(
𝜕

𝜕𝜃
(sin 𝜃 𝑢𝜃𝐵𝑟 ) +

𝜕

𝜕𝜙

(
𝑢𝜙𝐵𝑟

) )
.

Alternatively, we can also use the induction equation in cylindrical coordinates at the boundary. These
quantities are

𝜕𝐵𝑠

𝜕𝑡
= (B · ∇u)𝑠 − (u · ∇B)𝑠 = 𝐵𝑠

𝜕𝑢𝑠

𝜕𝑠
+
𝐵𝜙

𝑠

𝜕𝑢𝑠

𝜕𝜙
+ 𝐵𝑧

𝜕𝑢𝑠

𝜕𝑧
− 𝑢𝑠

𝜕𝐵𝑠

𝜕𝑠
−
𝑢𝜙

𝑠

𝜕𝐵𝑠

𝜕𝜙
− 𝑢𝑧

𝜕𝐵𝑠

𝜕𝑧

𝜕𝐵𝜙

𝜕𝑡
= (B · ∇u)𝜙 − (u · ∇B)𝜙 = 𝐵𝑠

𝜕𝑢𝜙

𝜕𝑠
+
𝐵𝜙

𝑠

𝜕𝑢𝜙

𝜕𝜙
+ 𝐵𝑧

𝜕𝑢𝜙

𝜕𝑧
− 𝑢𝑠

𝜕𝐵𝜙

𝜕𝑠
−
𝑢𝜙

𝑠

𝜕𝐵𝜙

𝜕𝜙
− 𝑢𝑧

𝜕𝐵𝜙

𝜕𝑧
+
𝐵𝜙𝑢𝑠 − 𝑢𝜙𝐵𝑠

𝑠

𝜕𝐵𝑧

𝜕𝑡
= (B · ∇u)𝑧 − (u · ∇B)𝑧 = 𝐵𝑠

𝜕𝑢𝑧

𝜕𝑠
+
𝐵𝜙

𝑠

𝜕𝑢𝑧

𝜕𝜙
+ 𝐵𝑧

𝜕𝑢𝑧

𝜕𝑧
− 𝑢𝑠

𝜕𝐵𝑧

𝜕𝑠
−
𝑢𝜙

𝑠

𝜕𝐵𝑧

𝜕𝜙
− 𝑢𝑧

𝜕𝐵𝑧

𝜕𝑧
(1.15)

At the boundary, the induction equation takes the form

𝜕𝐵±
𝑠

𝜕𝑡
= 𝐵±

𝑠

𝜕𝑢𝑠

𝜕𝑠

����
±𝐻

+
𝐵±
𝜙

𝑠

𝜕𝑢±𝑠
𝜕𝜙

+ 𝐵±
𝑧

𝜕𝑢𝑠

𝜕𝑧

����
±𝐻

− 𝑢±𝑠
𝜕𝐵𝑠

𝜕𝑠

����
±𝐻

−
𝑢±
𝜙

𝑠

𝜕𝐵±
𝑠

𝜕𝜙
− 𝑢±𝑧

𝜕𝐵𝑠

𝜕𝑧

����
±𝐻

𝜕𝐵±
𝜙

𝜕𝑡
= 𝐵±

𝑠

𝜕𝑢𝜙

𝜕𝑠

����
±𝐻

+
𝐵±
𝜙

𝑠

𝜕𝑢±
𝜙

𝜕𝜙
+ 𝐵±

𝑧

𝜕𝑢𝜙

𝜕𝑧

����
±𝐻

− 𝑢±𝑠
𝜕𝐵𝜙

𝜕𝑠

����
±𝐻

−
𝑢±
𝜙

𝑠

𝜕𝐵±
𝜙

𝜕𝜙
− 𝑢±𝑧

𝜕𝐵𝜙

𝜕𝑧

����
±𝐻

+
𝐵±
𝜙
𝑢±𝑠 − 𝑢±

𝜙
𝐵±
𝑠

𝑠

𝜕𝐵±
𝑧

𝜕𝑡
= 𝐵±

𝑠

𝜕𝑢𝑧

𝜕𝑠

����
±𝐻

+
𝐵±
𝜙

𝑠

𝜕𝑢±𝑧
𝜕𝜙

+ 𝐵±
𝑧

𝜕𝑢𝑧

𝜕𝑧

����
±𝐻

− 𝑢±𝑠
𝜕𝐵𝑧

𝜕𝑠

����
±𝐻

−
𝑢±
𝜙

𝑠

𝜕𝐵±
𝑧

𝜕𝜙
− 𝑢±𝑧

𝜕𝐵𝑧

𝜕𝑧

����
±𝐻

where the ± superscript shows that the quantity is evaluated at the boundary 𝑧 = ±𝐻. Terms in the form
𝜕
𝜕𝑠
|±𝐻 means the field has to be differentiated first and evaluated at the boundary later. Hence, we see

that these evolution equations are not closed in themselves, in the sense that the derivatives 𝜕𝑠B and
𝜕𝑧B cannot be evaluated or represented unless the field B can be evaulated or represented in the entire
volume in the parameterization. This is not the case with the PG model, where the parameterization
of the magnetic quantities only involves the integrated moments, the boundary field, and the equatorial
field. Therefore, these equations cannot be used for time stepping or simulation. The only way to
move forward seems to use eq.(1.14). This equation only involves surface operators (owing to the
non-penetration condition 𝑢𝑟 = n̂ · 𝑢 = 0), and is closed on the surface of the sphere.

Nevertheless, using the induction equation of the cylindrical components can be very useful in solving
eigenvalue problems where the background velocity field is zero (it is almost the case with the eigenvalue
problems of interest). In these problems, the linearized version of the equation will only involve cross
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Figure 1.1: The radial bases for streamfunction, equatorial velocity and axial vorticity.
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terms of the background magnetic field, whose derivatives are known everywhere in space, and the
perturbed velocity field. If we keep the notation 𝑢 for perturbational velocity, and introduce notation 𝑏
for perturbational magnetic field, the linearized induction equation takes the form

𝜕𝑏±𝑠
𝜕𝑡

= 𝐵0±
𝑠

𝜕𝑢𝑠

𝜕𝑠

����
±𝐻

+
𝐵0±
𝜙

𝑠

𝜕𝑢±𝑠
𝜕𝜙

+ 𝐵0±
𝑧

𝜕𝑢𝑠

𝜕𝑧

����
±𝐻

− 𝑢±𝑠
𝜕𝐵0

𝑠

𝜕𝑠

����
±𝐻

−
𝑢±
𝜙

𝑠

𝜕𝐵0±
𝑠

𝜕𝜙
− 𝑢±𝑧

𝜕𝐵0
𝑠

𝜕𝑧

����
±𝐻

𝜕𝑏±
𝜙

𝜕𝑡
= 𝐵0±

𝑠

𝜕𝑢𝜙

𝜕𝑠

����
±𝐻

+
𝐵0±
𝜙

𝑠

𝜕𝑢±
𝜙

𝜕𝜙
+ 𝐵0±

𝑧

𝜕𝑢𝜙

𝜕𝑧

����
±𝐻

− 𝑢±𝑠
𝜕𝐵0

𝜙

𝜕𝑠

����
±𝐻

−
𝑢±
𝜙

𝑠

𝜕𝐵0±
𝜙

𝜕𝜙
− 𝑢±𝑧

𝜕𝐵0
𝜙

𝜕𝑧

����
±𝐻

+
𝐵0±
𝜙
𝑢±𝑠 − 𝑢±

𝜙
𝐵0±
𝑠

𝑠

𝜕𝑏±𝑧
𝜕𝑡

= 𝐵0±
𝑠

𝜕𝑢𝑧

𝜕𝑠

����
±𝐻

+
𝐵0±
𝜙

𝑠

𝜕𝑢±𝑧
𝜕𝜙

+ 𝐵0±
𝑧

𝜕𝑢𝑧

𝜕𝑧

����
±𝐻

− 𝑢±𝑠
𝜕𝐵0

𝑧

𝜕𝑠

����
±𝐻

−
𝑢±
𝜙

𝑠

𝜕𝐵0±
𝑧

𝜕𝜙
− 𝑢±𝑧

𝜕𝐵0
𝑧

𝜕𝑧

����
±𝐻

Recall that in the plesio-geostrophic ansatz for the velocity field, u𝑒 = 1
𝐻
∇ × 𝜓ẑ, 𝑢𝑧 = 𝑧

𝐻
𝑑𝐻
𝑑𝑠
𝑢𝑠 and the

stream function 𝜓 is 𝑧-invariant. Therefore, the equations can be simplified as

𝜕𝑏±𝑠
𝜕𝑡

= 𝐵0±
𝑠

𝜕

𝜕𝑠

(
1
𝑠𝐻

𝜕𝜓

𝜕𝜙

)
+
𝐵0±
𝜙

𝑠2𝐻

𝜕2𝜓

𝜕𝜙2 − 1
𝑠𝐻

𝜕𝜓

𝜕𝜙

𝜕𝐵0
𝑠

𝜕𝑠

����
±𝐻

+ 1
𝑠𝐻

𝜕𝜓

𝜕𝑠

𝜕𝐵0±
𝑠

𝜕𝜙
∓ 1
𝑠𝐻

𝑑𝐻

𝑑𝑠

𝜕𝜓

𝜕𝜙

𝜕𝐵0
𝑠

𝜕𝑧

����
±𝐻
,

𝜕𝑏±
𝜙

𝜕𝑡
= −𝐵0±

𝑠

𝜕

𝜕𝑠

(
1
𝐻

𝜕𝜓

𝜕𝑠

)
−
𝐵0±
𝜙

𝑠𝐻

𝜕2𝜓

𝜕𝑠𝜕𝜙
− 1
𝑠𝐻

𝜕𝜓

𝜕𝜙

𝜕𝐵0
𝜙

𝜕𝑠

����
±𝐻

+ 1
𝑠𝐻

𝜕𝜓

𝜕𝑠

𝜕𝐵0±
𝜙

𝜕𝜙
∓ 1
𝑠𝐻

𝑑𝐻

𝑑𝑠

𝜕𝜓

𝜕𝜙

𝜕𝐵0
𝜙

𝜕𝑧

����
±𝐻

+ 1
𝑠

(
𝐵0±
𝜙

𝑠𝐻

𝜕𝜓

𝜕𝜙
+
𝐵0±
𝑠

𝐻

𝜕𝜓

𝜕𝑠

)
,

𝜕𝑏±𝑧
𝜕𝑡

= ±𝐻𝐵0±
𝑠

𝜕

𝜕𝑠

(
1
𝑠𝐻2

𝑑𝐻

𝑑𝑠

𝜕𝜓

𝜕𝜙

)
±
𝐵0±
𝜙

𝑠2𝐻

𝑑𝐻

𝑑𝑠

𝜕2𝜓

𝜕𝜙2 +
𝐵0±
𝑧

𝑠𝐻2
𝑑𝐻

𝑑𝑠

𝜕𝜓

𝜕𝜙
− 1
𝑠𝐻

𝜕𝜓

𝜕𝜙

𝜕𝐵0
𝑧

𝜕𝑠

����
±𝐻

+ 1
𝑠𝐻

𝜕𝜓

𝜕𝑠

𝜕𝐵0±
𝑧

𝜕𝜙
∓ 1
𝑠𝐻

𝑑𝐻

𝑑𝑠

𝜕𝜓

𝜕𝜙

𝜕𝐵0
𝑧

𝜕𝑧

����
±𝐻
.

(1.16)
If we look at the right-hand-side of these induction equations, we see that the right-hand-side is free of
perturbed magnetic fields, but only involves background magnetic fields and perturbed velocity field.
Therefore, when given the background field, the boundary terms can be written as

𝜕𝑏±𝑎
𝜕𝑡

= L±
𝑖 𝜓 =⇒ 𝑏±𝑎 =

1
𝑖𝜔

L±
𝑖 𝜓

where L±
𝑖

are some linear operators. In fact, this is a feature that applies to all induction equation, which
motivates the following formulation.

1.6 Reduced dimensional system

Proposition 1.6.1 The ideal induction equations of the boundary magnetic field or the integrated mag-
netic moments, when linearized around a background field with zero velocity, involves only the background
magnetic field / moment and the perturbed velocity. In other words, all of them can be written as

𝜕𝑏𝑎

𝜕𝑡
= L𝑎𝜓,

or in the frequency domain
𝑖𝜔𝑏𝑎 = L𝑎𝜓,

where 𝑏𝑎 ∈ {𝑚𝑠𝑠, 𝑚𝜙𝜙, 𝑚𝑠𝜙, 𝑚𝑠𝑧 , 𝑚𝜙𝑧 ,�𝑧𝑚𝑠𝑠, �𝑧𝑚𝜙𝜙, �𝑧𝑚𝑠𝜙, 𝑏𝑒𝑠, 𝑏𝑒𝜙, 𝑏𝑒𝑧 , 𝑏𝑒𝑠,𝑧 , 𝑏𝑒𝜙,𝑧 , 𝑏
±
𝑠 , 𝑏

±
𝜙
, 𝑏±𝑧 }.

This proposition leads to the following statement.

8



Corollary 1.6.2 When linearized around a background field with zero velocity, the complete PG system
with diffusionless vorticity and induction equations and boundary terms can always be reduced to a
single equation [

𝜕

𝜕𝑠

(
𝑠

𝐻

𝜕

𝜕𝑠

)
+

(
1
𝑠𝐻

− 1
2𝐻2

𝑑𝐻

𝑑𝑠

)
𝜕2

𝜕𝜙2

]
𝜕2𝜓

𝜕𝑡2
= − 2

𝐻2
𝑑𝐻

𝑑𝑠

𝜕

𝜕𝜙

𝜕𝜓

𝜕𝑡
+ Ltot𝜓

where Ltot is the combined linear operator that gives the Lorentz force. Furthermore, considering the
forms of the induction equations and vorticity equation, Ltot is at most 3rd order in (𝑠, 𝜙, 𝑧). In the
frequency domain, it is written as

−𝜔2
[
𝜕

𝜕𝑠

(
𝑠

𝐻

𝜕

𝜕𝑠

)
+

(
1
𝑠𝐻

− 1
2𝐻2

𝑑𝐻

𝑑𝑠

)
𝜕2

𝜕𝜙2

]
𝜓 = −𝑖𝜔 2

𝐻2
𝑑𝐻

𝑑𝑠

𝜕𝜓

𝜕𝜙
+ Ltot𝜓

This gives a further dilemma: the eigenvalue problem will be closed in the vorticity itself, regardless
of the boundary condition. In other words, changing the boundary condition does not even change the
eigenvalue problem. How is that possible? Does that mean the eigenmode is not even affected by the
choice of boundary conditions? Will the boundary condition be automatically satisfied by the perturbed
magnetic field? For instance, will 𝑏±𝑠 , 𝑏±

𝜙
and 𝑏±𝑧 solved in this way automatically match an insulating

boundary condition, and if not, when will it or is it necessary?
Corollary 1.6.2 is useful conceptually, but cannot be directly implemented as an eigenvalue problem,

since the right-hand-sides contain both first derivative and stream function itself. We must instead flatten
out the second order derivative, and consider the augmented system. One way to achieve this is to write[

𝜕

𝜕𝑠

(
𝑠

𝐻

𝜕

𝜕𝑠

)
+

(
1
𝑠𝐻

− 1
2𝐻2

𝑑𝐻

𝑑𝑠

)
𝜕2

𝜕𝜙2

]
𝜕𝜓

𝜕𝑡
= − 2

𝐻2
𝑑𝐻

𝑑𝑠

𝜕𝜓

𝜕𝜙
+ 𝐹

𝜕𝐹

𝜕𝑡
= Ltot𝜓

(1.17)

or in matrix form of the eigenvalue problem

𝑖𝜔

(
𝜕
𝜕𝑠

(
𝑠
𝐻

𝜕
𝜕𝑠

)
− 𝑚2

𝑠𝐻
+ 𝑚2

2𝐻2
𝑑𝐻
𝑑𝑠

0
0 1

) (
𝜓𝑚

𝐹𝑚

)
=

(
−2𝑖𝑚

𝐻2
𝑑𝐻
𝑑𝑠

1
Ltot 0

) (
𝜓𝑚

𝐹𝑚

)
(1.18)

This is similar to the velocity-stress formulation, often used in seismological simulations. Interestingly,
since we know {𝜓𝑚𝑛 (𝑠) = 𝑠 |𝑚 |𝐻3𝑃

( 3
2 , |𝑚 | )

𝑛 (2𝑠2 − 1)} are the eigenfunctions for the Sturm-Liouville
problem (first equation, without 𝐹 contribution), we can conclude these {𝜓𝑚𝑛 (𝑠)} form a complete
orthogonal basis with respect to weight 2𝑖𝑠𝑚

𝐻3 = − 2𝑖𝑚
𝐻2

𝑑𝐻
𝑑𝑠

. In other words, we should expect that the
appropriate expansion for 𝐹 that can be the solution to the eigenvalue problem should take the form

𝐹𝑚𝑛 (𝑠) = 𝑠

𝐻3𝜓
𝑚𝑛 (𝑠) = 𝑠 |𝑚 |+1𝑃

( 3
2 , |𝑚 | )

𝑛 (2𝑠2 − 1).

As I have mentioned, the boundary induction equation in cylindrical coordinates cannot be used
in a time-stepping solver with PG formulations. The only equation that seems to be closed in itself is
eq.(1.14). This, however, involves one complication and one limitation. First, as the equation is not in
cylindrical coordinates, while all other equations are, we need an explicit spherical-cylindrical transform.
Among other complications, this means the sparsity of the matrix or orthogonality of the basis might be
partially destroyed. Second, noting that the Lorentz force involves only the 𝑠, 𝑧 and 𝜙 components of the
boundary magnetic fields, we need to link the radial field to the three components. This can be easily
done with an insulating boundary condition, where the magnetic field external to the sphere is harmonic.
However, once this assumption is dropped, it will be much more challenging to derive a general link.
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1.7 Induction equation in the equatorial plane

The induction equations in the equatorial plane are obtained by taking the original induction equation at
the equatorial plane, i.e. 𝑧 = 0. Therefore, it is useful to first introduce this equator sampling operator,

S𝑒 : 𝑉 (R3) ↦→ 𝑉 (R2)

where 𝑉 (R3) is some vector space of functions defined in 3-D space, and 𝑉 (R2) is some vector space of
functions defined on 2-D plane. The sampling operator is simply defined as

S𝑒 𝑓 (r) = 𝑓 |𝑧=0 = 𝑓 (r𝑒, 𝑧 = 0) = 𝑓 𝑒 (r𝑒).

Here the superscript 𝑒 is used to mark a quantity that is evaluated in the equatorial plane. The subscript
𝑒 is reserved to denote equatorial components of a vector field. Operator S𝑒 is linear (naturally),

S𝑒 (𝛼 𝑓 + 𝛽𝑔) = 𝛼S𝑒 𝑓 + 𝛽S𝑒𝑔 = 𝛼 𝑓 𝑒 + 𝛽𝑔𝑒

where 𝑓 and 𝑔 are functions while 𝛼 and 𝛽 are constants. It is also distributive,

S𝑒 ( 𝑓 𝑔) = (S𝑒 𝑓 ) (S𝑒𝑔) = 𝑓 𝑒𝑔𝑒 .

Last but not least, it commutes with differential operators in the equatorial plane, as well as functions
defined using only equatorial components

S𝑒 ( 𝑓 (r𝑒)𝑔(r)) = 𝑓 (r𝑒)S𝑒𝑔 = 𝑓 (r𝑒)𝑔𝑒 (r𝑒),
S𝑒 (∇𝑒𝑔(r)) = ∇𝑒 (S𝑒𝑔) = ∇𝑒𝑔

𝑒 (r𝑒).

The properties above are intuitive results, and I shall omit the proof here. Rigorous proof is possible by
simply using the definition, sometimes combined with Cartesian coordinates. Now let us return to the
induction equation. The original equation takes the form,

𝜕B
𝜕𝑡

= ∇ × (u × B) = (B · ∇) u − (u · ∇) B.

To make use of the listed properties, we split the vectors as well as the nabla operator into equatorial and
vertical components, i.e. u = u𝑒 + 𝑢𝑧 ẑ, B = B𝑒 + 𝐵𝑧 ẑ and ∇ = ∇𝑒 + ẑ𝜕𝑧 . The equation reads

𝜕B
𝜕𝑡

= (B𝑒 · ∇𝑒 + 𝐵𝑧𝜕𝑧) (u𝑒 + 𝑢𝑧 ẑ) − (u𝑒 · ∇𝑒 + 𝑢𝑧𝜕𝑧) B

= B𝑒 · ∇𝑒u𝑒 + 𝐵𝑧𝜕𝑧u𝑒 − u𝑒 · ∇𝑒B − 𝑢𝑧𝜕𝑧B + ẑ (B𝑒 · ∇𝑒𝑢𝑧 + 𝐵𝑧𝜕𝑧𝑢𝑧)
= B𝑒 · ∇𝑒u𝑒 − u𝑒 · ∇𝑒B − 𝑢𝑧𝜕𝑧B + ẑ (B𝑒 · ∇𝑒𝑢𝑧 + 𝐵𝑧𝜕𝑧𝑢𝑧)

(1.19)

where the column ansatz is used in the last step to remove the term containing 𝜕𝑧u𝑒. To obtain the
evolution equation for B(𝑧 = 0) = B𝑒, we apply the sampling operator to eq.(1.19),

𝜕B𝑒

𝜕𝑡
= S𝑒 𝜕B

𝜕𝑡
=

(
B𝑒
𝑒 · ∇𝑒

)
u𝑒 − (u𝑒 · ∇𝑒) B𝑒 + ẑ𝐵𝑒

𝑧 (𝜕𝑧𝑢𝑧)𝑒 . (1.20)

Here we used the property 𝑢𝑒𝑧 = 0, i.e. the axial velocity is zero at the equatorial plane, again dictated by
the columnar ansatz. To obtain the evolution equation for 𝜕𝑧B𝑒 | (𝑧=0) = B𝑒

𝑒,𝑧 , we apply S𝑒𝜕𝑧 to eq.(1.19),
and take only the equatorial components,

𝜕B𝑒
𝑒,𝑧

𝜕𝑡
= S𝑒𝜕𝑧

𝜕B𝑒

𝜕𝑡
=

(
B𝑒
𝑒,𝑧 · ∇𝑒

)
u𝑒 − (u𝑒 · ∇𝑒) B𝑒

𝑒,𝑧 − B𝑒
𝑒,𝑧 (𝜕𝑧𝑢𝑧)𝑒 . (1.21)
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1.8 Dimensional redundancy of the eigenvalue problem

Eigenvalue problems in the PG model is typically solved using the full PG variables. As will be seen
in the next chapter (2), a set of transformed variables and their corresponding equations which are
mathematically equivalent to the original system can also be used to solve the eigenvalue problems.
Either way, the MHD configuration of PG involves solving the following set of equations,

©­­­­«
M0

M1
. . .

M𝑄

ª®®®®¬
𝑑

𝑑𝑡

©­­­­«
𝑥0
𝑥1
...

𝑥𝑄

ª®®®®¬
=

©­­­­«
K0,0 K0,1 · · · K0,𝑄
K1,0 K1,1 · · · K1,𝑄
...

...
. . .

...

K𝑄,0 K𝑄,1 · · · K𝑄,𝑄

ª®®®®¬
©­­­­«
𝑥0
𝑥1
...

𝑥𝑄

ª®®®®¬
.

Here all the dynamical variables are denoted with 𝑥𝑞, and the linear operators in space are denoted as
M𝑝 and K𝑝𝑞, depending on whether they operate on the time derivative or not. This formulation applies
to both the original formulation and the transformed formulation (see end of next chapter).

As we see in the previous section, as long as we are working with ideal linearized system around
a static background flow, the RHS of magnetic induction equations are always a function of 𝜓, but do
not concern magnetic quantities at all. Therefore, the operators K𝑝𝑞 = 0 for 𝑝, 𝑞 ≥ 1. The resulting
algebraic eigenvalue problem that comes from Galerkin method is

𝑖𝜔Mx = 𝑖𝜔

©­­­­«
M0

M1
. . .

M𝑄

ª®®®®¬
©­­­­«

x0
x1
...

x𝑄

ª®®®®¬
=

©­­­­«
K0,0 K0,1 · · · K0,𝑄
K1,0 0 · · · 0
...

...
. . .

...

K𝑄,0 0 · · · 0

ª®®®®¬
©­­­­«

x0
x1
...

x𝑄

ª®®®®¬
= Kx.

Since the mass matrix is fully invertible (and diagonal with certain formulations), this generalized
eigenvalue problem can be recast into an ordinary eigenvalue problem

K̃x =

©­­­­«
M−1

0 K0,0 M−1
0 K0,1 · · · M−1

0 K0,𝑄
M−1

1 K1,0 0 · · · 0
...

...
. . .

...

M−1
𝑄

K𝑄,0 0 · · · 0

ª®®®®¬
©­­­­«

x0
x1
...

x𝑄

ª®®®®¬
= 𝑖𝜔

©­­­­«
x0
x1
...

x𝑄

ª®®®®¬
= 𝑖𝜔x.

The total number of magnetic quantities involved in the bulk or at the equatorial plane is given by𝑄 = 13
for both the original and transformed formulations. If we expand these fields to a uniform truncation
level of 𝑁 , the overall mass matrix and the stiffness matrix will have the dimension M,K ∈ C14𝑁×14𝑁 .

Side remark: Holdenried-Chernoff (2021) suggested that the quadratic moments be expanded to 2𝑁
instead of 𝑁 , which would give a total dimension of C22𝑁×22𝑁 . This is sensible for the full equations,
but seems rather unnecessary for the linearized system. Physically, the pertubations in the quadratic
moments are of the form 𝐵𝑏. Given that the background field is "band-limited" in degrees of 𝑠, the entire
quantity should inherit its truncation level from 𝑏 instead of 𝑏2. One can also see it mathematically by
looking at the linearized induction equations, whose RHSs are really just a function of 𝜓. The quantity
should thus inherit its truncation level from 𝜓. If following the 2𝑁 truncation level, one whould see ∼ 𝑁
trailing zeros or very small values in the spectra of these quadratic moments.

Andy has been suggesting recently (Jan. 2024) that one should manually remove components that
are trivial since they are inactive under certain background fields, in order to make the stiffness matrix
non-singular. Now I shall show that it is generally impossible. In constrast, regardless of the background
field, the formulation, and existence of trivial lines, the stiffness matrix K or its modified form K̃ will
always be exactly singular. Here I provide two approaches to illustrate this. First, simply by casting the
original system into the reduced dimensional system (prev. section), the algebraic form is given by

𝑖𝜔

(
M𝜓

M𝐹

)
x′ =

(
K𝜓,𝜓 K𝜓,𝐹

K𝐹,𝜓 0

)
x′ =⇒

(
M−1

𝜓
K𝜓,𝜓 M−1

𝜓
K𝜓,𝐹

M−1
𝐹

K𝐹,𝜓 0

)
x′ = 𝑖𝜔x′.
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which, at a truncation degree of 𝑁 for 𝜓, admits at most 2𝑁 eigenvalues. This already hints at the fact
that the rank of the 14𝑁- or 22𝑁-dimensional square matrices K or K̃ should be at most be 2𝑁 .

Next, I will show directly that rank(K) ≤ 2𝑁 .

Proof 1: let us consider the blocked form of K,

K =

(
A B
C D

)
=

©­­­­«
K0,0 K0,1 · · · K0,𝑄
K1,0
... 0

K𝑄,0

ª®®®®¬
Note A = K0,0 is invertible; in the ideal system this is the submatrix for the Coriolis operator, which is
diagonal. Based on this observation, the following theorem holds,

rank(K) = rank(A) + rank (K/A) = rank(A) + rank
(
D − CA−1B

)
. (1.22)

This theorem is known as Guttman’s theorem, or Guttman rank additivity formula. Notation K/A gives
the Schur complement of A. For a good reference material for Schur complement and its properties
including the Guttman’s theorem, please refer to the wikipedia page or Ouellette 1981. Since K0,0 is an
𝑁 × 𝑁 invertible matrix, rank(A) = rank(K0,0) = 𝑁 . On the other hand, since D is really just a trivial
matrix, its Schur complement immediately has the factorization

K/A = D − CA−1B = −
©­­«

K1,0
...

K𝑄,0

ª®®¬ K−1
0,0

(
K0,1 · · · K0,𝑄

)
which gives rank(K/A) ≤ rank(K−1

0,0) = 𝑁 . Adding these two ranks, we come to the conclusion

rank(K) = rank(A) + rank(K/A) ≤ 2𝑁. ■ (1.23)

It is important to understand that there is nothing fancy here. There are many linear transformations one
can also to factorize this block matrix or show the linear dependency. As an alternative approach,

Proof 2: let us consider another blocked form

K =

(
K0

K1:𝑄

)
=

©­­­­«
K0,0 K0,1 · · · K0,𝑄
K1,0 0 · · · 0
...

...
. . .

...

K𝑄,0 0 · · · 0

ª®®®®¬
The rank of the upper block, K0 ∈ C𝑁×14𝑁 , is bounded by the row dimensions, hence rank(K0) ≤ 𝑁 . For
the rank of the lower block, we need only check its column rank. Since all its columns are trivial except
the leading 𝑁 columns, the column rank is again bounded by 𝑁 , hence rank(K1:𝑄) ≤ 𝑁 . Concatenating
these two matrices together, we have once again rank(K) ≤ rank(K0) + rank(K1:𝑄) ≤ 2𝑁 . ■

Now I even regret mentioning Schur complement and Guttman’s theorem in the first place. The
alternative approach is so intuitive and simple, and even stronger: whether K0,0 is invertible or not is
irrelevant. The result that a matrix with a huge trivial diagonal block has very small rank is also evident.
Resorting to Schur complement is really an indication that I am slipping at linear algebra.

Finally, since M is an invertible map, rank(K̃) = rank(K) ≤ 2𝑁 .
This result shows that the full system (either original PG or transformed variables), same as the

reduced system (as it should be), admits at most 2𝑁 eigenvalues. In other words, 6/7 or 10/11 of the
dimensions of the matrix are redudant. Unfortunately, it won’t be so easy to just remove the zero rows.

Another indication of this result is that if you are solving a full system, but there are more than 2𝑁
eigenvalues significantly different from zero, then you are definitely looking at numerical contamination.
This might be a good signal to increase the precision for the quadrature (or perhaps also for the eigensolver,
although I suspect the eigensolver should be accurate enough at the system’s size of interest). In any
way, reduced system should be a more robust method.
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1.9 Calculation of energies

In almost all quasi-geostrophic models, the topic of energy is relatively simple. Density gradient or
compositional convection are almost never (to my knowledge, never ever) considered except in buoyancy
term, and hence no potential energy coming from chemical differentiation or background advection is put
into the system. Chemical reactions and phase changes are never included, and no energy is generated
or extracted from the system in this way. If radioactive energy is ever considered, it merely serves to
provide a heat source. The only energies at play are kinetic energy (Boussinesq approximation does
not seem to be consistent without potential energy fluctuation, but I have not seen any discussion on
this intermediate type of energy), eletromagnetic energy, and internal energy (or other thermodynamic
potential functions).

Among the three, the representation of kinetic energy is inherantly supported by the PG model. This
is because PG model has a 3-D (albeit columnar) representation of the velocity field. The kinetic energy
density is given by

E𝑘 =
1
2
𝑢2 =

1
2

(
𝑢2
𝑠 + 𝑢2

𝜙 + 𝑢2
𝑧

)
=

1
2

[
1

𝑠2𝐻2

(
𝜕𝜓

𝜕𝜙

)2
+ 1
𝐻2

(
𝜕𝜓

𝜕𝑠

)2
+ 𝑧2

𝐻6

(
𝜕𝜓

𝜕𝜙

)2
]
.

Given a columnar ansatz with 𝜓 = 𝜓(𝑠, 𝜙), we can first write down the total kinetic energy

𝐸𝑘 =

∫
𝑉

E𝑘 𝑑𝑉 =

∫ 1

0

∫ 2𝜋

0

∫ 𝐻

−𝐻
E𝑘 𝑑𝑧𝑠𝑑𝜙𝑑𝑠

=

∫ 1

0

∫ 2𝜋

0

[
1
𝑠2𝐻

(
𝜕𝜓

𝜕𝜙

)2
+ 1
𝐻

(
𝜕𝜓

𝜕𝑠

)2
+ 1

3𝐻3

(
𝜕𝜓

𝜕𝜙

)2
]
𝑠𝑑𝜙𝑑𝑠.

(1.24)

Expanding 𝜓 in Fourier series in the azimuthal direction, i.e. 𝜓(𝑠, 𝜙) = ∑
𝑚 𝜓

𝑚(𝑠)𝑒𝑖𝑚𝜙, and recalling
the orthogonality of the Fourier basis 𝑒𝑖𝑚𝜙 in interval [0, 2𝜋], we can rewrite the total kinetic energy as
a summation of different components with different azimuthal wavenumber,

𝐸𝑘 =
∑︁
𝑚

∫ 1

0

1
𝐻

[
1
𝑠2

(𝜓𝑚)2 +
(
𝑑𝜓𝑚

𝑑𝑠

)2
+ 1

3𝐻2 (𝜓𝑚)2

]
𝑑𝑠 =

∑︁
𝑚

∫ 1

0

1
𝐻

[
3 − 2𝑠2

3𝑠2𝐻2 (𝜓𝑚)2 +
(
𝑑𝜓𝑚

𝑑𝑠

)2
]
𝑑𝑠
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Chapter 2

Regularity constraints on expansions,
conjugate variables

2.1 Regularity conditions on rank-2 tensor in cylindrical coordinates

In this section, I derive the regularity conditions for general rank-2 tensors in cylindrical coordinates.
This approach has been more elaborately exploited for arbitrary ranks in Regularity conditions for the
Fourier coefficients of tensors in polar coordinates. The excerpt here offers a more self-contained,
explicit and easy-to-comprehend explanation.

Consider a rank-2 tensor field in 2-D space, denoted as A ∈ C2×2. The tensor can be expressed in
any locally orthogonal frame as

𝐴𝑖 𝑗 = ê𝑖 · A · ê 𝑗 .

Its components can be expressed in Cartesian coordinates as well as cylindrical coordinates using
matrices, which are related via transform(

𝐴𝑥𝑥 𝐴𝑥𝑦

𝐴𝑦𝑥 𝐴𝑦𝑦

)
=

(
cos 𝜙 − sin 𝜙
sin 𝜙 cos 𝜙

) (
𝐴𝑠𝑠 𝐴𝑠𝜙

𝐴𝜙𝑠 𝐴𝜙𝜙

) (
cos 𝜙 sin 𝜙
− sin 𝜙 cos 𝜙

)
The elements in Cartesian coordinates are thus related to the elements in the cylindrical coordinates via

𝐴𝑥𝑥 = cos2 𝜙𝐴𝑠𝑠 − cos 𝜙 sin 𝜙
(
𝐴𝑠𝜙 + 𝐴𝜙𝑠

)
+ sin2 𝜙𝐴𝜙𝜙,

𝐴𝑦𝑦 = sin2 𝜙𝐴𝑠𝑠 + cos 𝜙 sin 𝜙
(
𝐴𝑠𝜙 + 𝐴𝜙𝑠

)
+ cos2 𝜙𝐴𝜙𝜙,

𝐴𝑥𝑦 = cos 𝜙 sin 𝜙
(
𝐴𝑠𝑠 − 𝐴𝜙𝜙

)
+ cos2 𝜙𝐴𝑠𝜙 − sin2 𝐴𝜙𝑠,

𝐴𝑦𝑥 = cos 𝜙 sin 𝜙
(
𝐴𝑠𝑠 − 𝐴𝜙𝜙

)
+ cos2 𝜙𝐴𝜙𝑠 − sin2 𝐴𝑠𝜙 .

Components of A are regular in cylindrical coordinates, which can be expanded in Fourier series of
azimuthal wavenumber. For instance, the 𝐴𝑠𝑠 component can be expressed as

𝐴𝑠𝑠 =

+∞∑︁
𝑚=−∞

𝐴𝑚
𝑠𝑠 (𝑠)𝑒𝑖𝑚𝜙

where 𝐴𝑚
𝑠𝑠 is the Fourier coefficient for azimuthal wavenumber 𝑚. Expansions of other components

naturally follow. Expressing the cosines and sines also in Fourier basis

cos 𝜙 =
𝑒𝑖𝜙 + 𝑒−𝑖𝜙

2
, sin 𝜙 =

𝑒𝑖𝜙 − 𝑒−𝑖𝜙
2𝑖

,

cos2 𝜙 =
𝑒𝑖2𝜙 + 𝑒−𝑖2𝜙 + 2

4
, sin2 𝜙 = −𝑒

𝑖2𝜙 + 𝑒−𝑖2𝜙 − 2
4

, cos 𝜙 sin 𝜙 =
𝑒𝑖2𝜙 − 𝑒−𝑖2𝜙

4𝑖
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We see that the tensor elements in Cartesian coordinates have the Fourier expansion

𝐴𝑥𝑥 =
∑︁
𝑚

𝑒𝑖𝑚𝜙

4

{
2
(
𝐴𝑚
𝑠𝑠 + 𝐴𝑚

𝜙𝜙

)
+

[
𝐴𝑚
𝑠𝑠 − 𝐴𝑚

𝜙𝜙 − 𝑖
(
𝐴𝑚
𝑠𝜙 + 𝐴𝑚

𝜙𝑠

)]
𝑒−𝑖2𝜙 +

[
𝐴𝑚
𝑠𝑠 − 𝐴𝑚

𝜙𝜙 + 𝑖
(
𝐴𝑚
𝑠𝜙 + 𝐴𝑚

𝜙𝑠

)]
𝑒𝑖2𝜙

}
𝐴𝑦𝑦 =

∑︁
𝑚

𝑒𝑖𝑚𝜙

4

{
2
(
𝐴𝑚
𝑠𝑠 + 𝐴𝑚

𝜙𝜙

)
−

[
𝐴𝑚
𝑠𝑠 − 𝐴𝑚

𝜙𝜙 − 𝑖
(
𝐴𝑚
𝑠𝜙 + 𝐴𝑚

𝜙𝑠

)]
𝑒−𝑖2𝜙 −

[
𝐴𝑚
𝑠𝑠 − 𝐴𝑚

𝜙𝜙 + 𝑖
(
𝐴𝑚
𝑠𝜙 + 𝐴𝑚

𝜙𝑠

)]
𝑒𝑖2𝜙

}
𝐴𝑥𝑦 =

∑︁
𝑚

𝑒𝑖𝑚𝜙

4

{
2
(
𝐴𝑚
𝑠𝜙 − 𝐴𝑚

𝜙𝑠

)
+

[
𝐴𝑚
𝑠𝜙 + 𝐴𝑚

𝜙𝑠 + 𝑖
(
𝐴𝑚
𝑠𝑠 − 𝐴𝑚

𝜙𝜙

)]
𝑒−𝑖2𝜙 +

[
𝐴𝑚
𝑠𝜙 + 𝐴𝑚

𝜙𝑠 − 𝑖
(
𝐴𝑚
𝑠𝑠 − 𝐴𝑚

𝜙𝜙

)]
𝑒𝑖2𝜙

}
𝐴𝑦𝑥 =

∑︁
𝑚

𝑒𝑖𝑚𝜙

4

{
2
(
𝐴𝑚
𝜙𝑠 − 𝐴𝑚

𝑠𝜙

)
+

[
𝐴𝑚
𝑠𝜙 + 𝐴𝑚

𝜙𝑠 + 𝑖
(
𝐴𝑚
𝑠𝑠 − 𝐴𝑚

𝜙𝜙

)]
𝑒−𝑖2𝜙 +

[
𝐴𝑚
𝑠𝜙 + 𝐴𝑚

𝜙𝑠 − 𝑖
(
𝐴𝑚
𝑠𝑠 − 𝐴𝑚

𝜙𝜙

)]
𝑒𝑖2𝜙

}
Using these relations, we can deduce from the regularity of 𝐴𝑥𝑥 , 𝐴𝑦𝑦 , 𝐴𝑥𝑦 and 𝐴𝑦𝑥 that the following
fields must also be regular

𝐴𝑥𝑥 + 𝐴𝑦𝑦 =
∑︁
𝑚

(
𝐴𝑚
𝑠𝑠 + 𝐴𝑚

𝜙𝜙

)
𝑒𝑖𝑚𝜙

𝐴𝑥𝑦 − 𝐴𝑦𝑥 =
∑︁
𝑚

(
𝐴𝑚
𝑠𝜙 − 𝐴𝑚

𝜙𝑠

)
𝑒𝑖𝑚𝜙

(
𝐴𝑥𝑥 − 𝐴𝑦𝑦

)
+ 𝑖

(
𝐴𝑥𝑦 + 𝐴𝑦𝑥

)
=

∑︁
𝑚

[
𝐴𝑚
𝑠𝑠 − 𝐴𝑚

𝜙𝜙 + 𝑖
(
𝐴𝑚
𝑠𝜙 + 𝐴𝑚

𝜙𝑠

)]
𝑒𝑖 (𝑚+2)𝜙

(
𝐴𝑥𝑥 − 𝐴𝑦𝑦

)
− 𝑖

(
𝐴𝑥𝑦 + 𝐴𝑦𝑥

)
=

∑︁
𝑚

[
𝐴𝑚
𝑠𝑠 − 𝐴𝑚

𝜙𝜙 − 𝑖
(
𝐴𝑚
𝑠𝜙 + 𝐴𝑚

𝜙𝑠

)]
𝑒𝑖 (𝑚−2)𝜙

Plugging in these relations back into the expansion of Cartesian components, we see that these are
both necessary AND sufficient conditions for the regularity of the tensor elements under Cartesian
coordinates. We can then safely further simplify the relations from here, feeling safe that no information
is lost during the process. This procedure is, unfortunately, missing in Lewis and Bellan (1990). Only
the terms of 𝐴𝑥 are derived before the authors concluded that the respective terms must be regular. In
fact, counterinstances are easy to find that does NOT fulfill the regularity constraints BUT yields regular
𝐴𝑥 , say 𝐴𝑠 =

1
𝑠
(1 − cos 2𝜙) and 𝐴𝜙 = 1

𝑠
sin 2𝜙. It is the extra constraints from 𝐴𝑦 that jointly pose the

constraints. As in Lewis and Bellan (1990), the exponentials can be written as

𝑒𝑖𝑚𝜙 =
(𝑥 + 𝑖𝑦) |𝑚 |

𝑠 |𝑚 | .

This allows us to pose constraints on the Fourier coefficients 𝐴𝑚
𝑖 𝑗
(𝑠) as functions of cylindrical radius 𝑠.

The four relations are equivalent to the following four regularity constraints:

𝐴𝑚
𝑠𝑠 + 𝐴𝑚

𝜙𝜙 = 𝑠 |𝑚 |𝐶 (𝑠2)
𝐴𝑚
𝑠𝜙 − 𝐴𝑚

𝜙𝑠 = 𝑠
|𝑚 |𝐶 (𝑠2)

𝐴𝑚
𝑠𝑠 − 𝐴𝑚

𝜙𝜙 + 𝑖
(
𝐴𝑚
𝑠𝜙 + 𝐴𝑚

𝜙𝑠

)
= 𝑠 |𝑚+2 |𝐶 (𝑠2)

𝐴𝑚
𝑠𝑠 − 𝐴𝑚

𝜙𝜙 − 𝑖
(
𝐴𝑚
𝑠𝜙 + 𝐴𝑚

𝜙𝑠

)
= 𝑠 |𝑚−2 |𝐶 (𝑠2)

(2.1)

where we already used the symmetry or anti-symmetry in 𝑠 for Cartesian tensor components. Notation
𝐶 (𝑠2) denotes a function of 𝑠2 that is regular at 𝑠 = 0, which can be expanded into Taylor series. Now it
is time to split the domain of 𝑘 , Z, into intervals, so as to simplify the relations. We see that the absolute
value functions can be completely removed in each scenario if we split the domain into 𝑚 ≤ −2, 𝑚 = −1,
𝑚 = 0, 𝑚 = 1 and 𝑚 ≥ 2. The treaments of negative and positive 𝑚 are highly similar, and I shall only
write out the positive branch in detail. For 𝑚 ≥ 2, we can substract the two latter equations in eq.(2.1)
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and obtain 𝐴𝑚
𝑠𝜙

+ 𝐴𝑚
𝜙𝑠

∼ 𝑠𝑚−2; combining this with the second equation,{
𝐴𝑚
𝑠𝜙 + 𝐴𝑚

𝜙𝑠 = 𝑠
𝑚−2𝐶 (𝑠2)

𝐴𝑚
𝑠𝜙 − 𝐴𝑚

𝜙𝑠 = 𝑠
𝑚𝐶 (𝑠2)

=⇒
{
𝐴𝑚
𝑠𝜙 = 𝐴𝑚0

𝑠𝜙 𝑠
𝑚−2 + 𝐴𝑚1

𝑠𝜙 𝑠
𝑚 + 𝑠𝑚+2𝐶 (𝑠2)

𝐴𝑚
𝜙𝑠 = 𝐴

𝑚0
𝜙𝑠 𝑠

𝑚−2 + 𝐴𝑚1
𝜙𝑠 𝑠

𝑚 + 𝑠𝑚+2𝐶 (𝑠2)
and 𝐴𝑚0

𝑠𝜙 = 𝐴𝑚0
𝜙𝑠 .

Thus simultaneously we obtain the ansätze (this is in fact the required form for regularity) for 𝐴𝑠𝜙 and
𝐴𝜙𝑠, as well as a coupling condition. The second superscript on 𝐴𝑚𝑛

𝑖 𝑗
gives the index for power series

expansion in 𝑠. On the other hand, we can add the latter two equations of eq.(2.1) and combine with the
first equation to similarly come up with{
𝐴𝑚
𝑠𝑠 + 𝐴𝑚

𝜙𝜙 = 𝑠𝑚𝐶 (𝑠2)
𝐴𝑚
𝑠𝑠 − 𝐴𝑚

𝜙𝜙 = 𝑠𝑚−2𝐶 (𝑠2)
=⇒

{
𝐴𝑚
𝑠𝑠 = 𝐴

𝑚0
𝑠𝑠 𝑠

𝑚−2 + 𝐴𝑚1
𝑠𝑠 𝑠

𝑚 + 𝑠𝑚+2𝐶 (𝑠2)
𝐴𝑚
𝜙𝜙 = 𝐴𝑚0

𝜙𝜙𝑠
𝑚−2 + 𝐴𝑚1

𝜙𝜙𝑠
𝑚 + 𝑠𝑚+2𝐶 (𝑠2)

and 𝐴𝑚0
𝑠𝑠 = −𝐴𝑚0

𝜙𝜙 .

Finally, we reuse the third equation in eq.(2.1) to establish the relation between the coefficients for the
diagonal and the off-diagonal elements. To make sure both 𝑠𝑚−2 and 𝑠𝑚 vanishes on the LHS,

𝐴𝑚0
𝑠𝑠 − 𝐴𝑚0

𝜙𝜙 + 𝑖
(
𝐴𝑚0
𝑠𝜙 + 𝐴𝑚0

𝜙𝑠

)
= 0, =⇒ 𝐴𝑚0

𝑠𝜙 = 𝑖𝐴𝑚0
𝑠𝑠

𝐴𝑚1
𝑠𝑠 − 𝐴𝑚1

𝜙𝜙 + 𝑖
(
𝐴𝑚1
𝑠𝜙 + 𝐴𝑚1

𝜙𝑠

)
= 0

These are the four regularity constraints for 𝑚 ≥ 2. With all the ansätze, it can be easily verified that as
long as the coefficients fulfill these constraints, the target terms indeed satisfy eq.(2.1), and thus these
ansätze and constraints are also sufficient conditions.

Next, we take a look at the situation where 𝑚 = 1. The latter two equations now yield{
𝐴1
𝑠𝜙 + 𝐴1

𝜙𝑠 = 𝑠𝐶 (𝑠2)
𝐴1
𝑠𝜙 − 𝐴1

𝜙𝑠 = 𝑠𝐶 (𝑠2)
=⇒

{
𝐴1
𝑠𝜙 = 𝐴10

𝑠𝜙𝑠 + 𝑠3𝐶 (𝑠2)
𝐴1
𝜙𝑠 = 𝐴

10
𝜙𝑠𝑠 + 𝑠3𝐶 (𝑠2).

Apparently, no constraints are required; the ansatz alone suffices to enforce the correct leading power of
𝑠. This is equally true for 𝐴𝑠𝑠 and 𝐴𝜙𝜙,{

𝐴1
𝑠𝑠 + 𝐴1

𝜙𝜙 = 𝑠1𝐶 (𝑠2)
𝐴1
𝑠𝑠 − 𝐴1

𝜙𝜙 = 𝑠1𝐶 (𝑠2)
=⇒

{
𝐴1
𝑠𝑠 = 𝐴

10
𝑠𝑠𝑠 + 𝑠3𝐶 (𝑠2)

𝐴1
𝜙𝜙 = 𝐴10

𝜙𝜙𝑠 + 𝑠3𝐶 (𝑠2).

However, the last constraint still holds, that is we still need that the first-order term in 𝑠 of 𝐴1
𝑠𝑠 − 𝐴1

𝜙𝜙
and

𝑖

(
𝐴1
𝑠𝜙

+ 𝐴1
𝜙𝑠

)
cancel each other out,

𝐴10
𝑠𝑠 − 𝐴10

𝜙𝜙 + 𝑖
(
𝐴10
𝑠𝜙 + 𝐴10

𝜙𝑠

)
= 0.

These constraints are absent from Holdenried-Chernoff (2021) (note here we are not yet assuming
𝐴𝑠𝜙 = 𝐴𝜙𝑠).

Finally, we arrive at the 𝑚 = 0 case.{
𝐴0
𝑠𝜙 + 𝐴0

𝜙𝑠 = 𝑠
2𝐶 (𝑠2)

𝐴0
𝑠𝜙 − 𝐴0

𝜙𝑠 = 𝐶 (𝑠2)
=⇒

{
𝐴0
𝑠𝜙 = 𝐴00

𝑠𝜙 + 𝑠2𝐶 (𝑠2)
𝐴0
𝜙𝑠 = 𝐴

00
𝜙𝑠 + 𝑠2𝐶 (𝑠2)

and 𝐴00
𝑠𝜙 = −𝐴00

𝜙𝑠 .{
𝐴0
𝑠𝑠 + 𝐴0

𝜙𝜙 = 𝐶 (𝑠2)
𝐴0
𝑠𝑠 − 𝐴0

𝜙𝜙 = 𝑠2𝐶 (𝑠2)
=⇒

{
𝐴0
𝑠𝑠 = 𝐴

00
𝑠𝑠 + 𝑠2𝐶 (𝑠2)

𝐴0
𝜙𝜙 = 𝐴00

𝜙𝜙 + 𝑠2𝐶 (𝑠2)
and 𝐴00

𝑠𝑠 = 𝐴
00
𝜙𝜙 .

The third and the fourth equation in eq.(2.1) give the relations
𝐴00
𝑠𝑠 − 𝐴00

𝜙𝜙 + 𝑖
(
𝐴00
𝑠𝜙 + 𝐴00

𝜙𝑠

)
= 0

𝐴00
𝑠𝑠 − 𝐴00

𝜙𝜙 − 𝑖
(
𝐴00
𝑠𝜙 + 𝐴00

𝜙𝑠

)
= 0
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which are automatically satisfied given the previous ansätze. The negative 𝑚 scenarios are also similarly
derived. In the end, the required leading order and the constraints are summarized as follows

𝑚 = 0 :


𝐴0
𝑠𝑠 = 𝐴

00
𝑠𝑠 + 𝑠2𝐶 (𝑠2)

𝐴0
𝜙𝜙 = 𝐴00

𝜙𝜙 + 𝑠2𝐶 (𝑠2)
𝐴0
𝑠𝜙 = 𝐴00

𝑠𝜙 + 𝑠2𝐶 (𝑠2)
𝐴0
𝜙𝑠 = 𝐴

00
𝜙𝑠 + 𝑠2𝐶 (𝑠2)

,

{
𝐴00
𝑠𝑠 = 𝐴

00
𝜙𝜙

𝐴00
𝑠𝜙 = −𝐴00

𝜙𝑠

|𝑚 | = 1 :


𝐴𝑚
𝑠𝑠 = 𝐴

𝑚0
𝑠𝑠 𝑠 + 𝑠3𝐶 (𝑠2)

𝐴𝑚
𝜙𝜙 = 𝐴𝑚0

𝜙𝜙𝑠 + 𝑠3𝐶 (𝑠2)
𝐴𝑚
𝑠𝜙 = 𝐴𝑚0

𝑠𝜙 𝑠 + 𝑠3𝐶 (𝑠2)
𝐴𝑚
𝜙𝑠 = 𝐴

𝑚0
𝜙𝑠 𝑠 + 𝑠3𝐶 (𝑠2)

,

{
𝐴𝑚0
𝑠𝜙 + 𝐴𝑚0

𝜙𝑠 = 𝑖 sgn(𝑚)
(
𝐴𝑚0
𝑠𝑠 − 𝐴𝑚0

𝜙𝜙

)

|𝑚 | ≥ 2 :



𝐴𝑚
𝑠𝑠 = 𝐴

𝑚0
𝑠𝑠 𝑠

|𝑚 |−2 + 𝐴𝑚1
𝑠𝑠 𝑠

|𝑚 | + 𝑠 |𝑚 |+2𝐶 (𝑠2)
𝐴𝑚
𝜙𝜙 = 𝐴𝑚0

𝜙𝜙𝑠
|𝑚 |−2 + 𝐴𝑚1

𝜙𝜙𝑠
|𝑚 | + 𝑠 |𝑚 |+2𝐶 (𝑠2)

𝐴𝑚
𝑠𝜙 = 𝐴𝑚0

𝑠𝜙 𝑠
|𝑚 |−2 + 𝐴𝑚1

𝑠𝜙 𝑠
|𝑚 | + 𝑠 |𝑚 |+2𝐶 (𝑠2)

𝐴𝑚
𝜙𝑠 = 𝐴

𝑚0
𝜙𝑠 𝑠

|𝑚 |−2 + 𝐴𝑚1
𝜙𝑠 𝑠

|𝑚 | + 𝑠 |𝑚 |+2𝐶 (𝑠2)

,



𝐴𝑚0
𝑠𝑠 = −𝐴𝑚0

𝜙𝜙

𝐴𝑚0
𝑠𝜙 = 𝐴𝑚0

𝜙𝑠

𝐴𝑚0
𝑠𝜙 = 𝑖 sgn(𝑚)𝐴𝑚0

𝑠𝑠

𝐴𝑚1
𝑠𝜙 + 𝐴𝑚1

𝜙𝑠 = 𝑖 sgn(𝑚)
(
𝐴𝑚1
𝑠𝑠 − 𝐴𝑚1

𝜙𝜙

)
.

(2.2)
In many cases, it is further useful to assume symmetry of the tensor; this is the case with e.g. strain
tensor ε, strain-rate tensor ¤ε, stress tensor σ, and of course for our problem, Maxwell stress σ𝑀 . In this
case 𝐴𝑠𝜙 = 𝐴𝜙𝑠, and all coefficients of their power series in 𝑠 should match. However, for 𝑚 = 0 we
have 𝐴00

𝑠𝜙
= −𝐴00

𝜙𝑠
. The result is that 𝐴0

𝑠𝜙
= 𝐴0

𝜙𝑠
, when expanded in power series of 𝑠, has leading order

𝑠2 instead of 𝑠0. In addition, some original constraints will render redundant. In the end, the ansätze and
the regularity constraints for symmetric rank-2 tensors are given by

𝑚 = 0 :


𝐴0
𝑠𝑠 = 𝐴

00
𝑠𝑠 + 𝑠2𝐶 (𝑠2)

𝐴0
𝜙𝜙 = 𝐴00

𝜙𝜙 + 𝑠2𝐶 (𝑠2)
𝐴0
𝑠𝜙 = 𝐴00

𝑠𝜙𝑠
2 + 𝑠4𝐶 (𝑠2)

,

{
𝐴00
𝑠𝑠 = 𝐴

00
𝜙𝜙

|𝑚 | = 1 :


𝐴𝑚
𝑠𝑠 = 𝐴

𝑚0
𝑠𝑠 𝑠 + 𝑠3𝐶 (𝑠2)

𝐴𝑚
𝜙𝜙 = 𝐴𝑚0

𝜙𝜙𝑠 + 𝑠3𝐶 (𝑠2)
𝐴𝑚
𝑠𝜙 = 𝐴𝑚0

𝑠𝜙 𝑠 + 𝑠3𝐶 (𝑠2)
,

{
2𝐴𝑚0

𝑠𝜙 = 𝑖 sgn(𝑚)
(
𝐴𝑚0
𝑠𝑠 − 𝐴𝑚0

𝜙𝜙

)

|𝑚 | ≥ 2 :


𝐴𝑚
𝑠𝑠 = 𝐴

𝑚0
𝑠𝑠 𝑠

|𝑚 |−2 + 𝐴𝑚1
𝑠𝑠 𝑠

|𝑚 | + 𝑠 |𝑚 |+2𝐶 (𝑠2)
𝐴𝑚
𝜙𝜙 = 𝐴𝑚0

𝜙𝜙𝑠
|𝑚 |−2 + 𝐴𝑚1

𝜙𝜙𝑠
|𝑚 | + 𝑠 |𝑚 |+2𝐶 (𝑠2)

𝐴𝑚
𝑠𝜙 = 𝐴𝑚0

𝑠𝜙 𝑠
|𝑚 |−2 + 𝐴𝑚1

𝑠𝜙 𝑠
|𝑚 | + 𝑠 |𝑚 |+2𝐶 (𝑠2)

,


𝐴𝑚0
𝑠𝑠 = −𝐴𝑚0

𝜙𝜙

𝐴𝑚0
𝑠𝜙 = 𝑖 sgn(𝑚)𝐴𝑚0

𝑠𝑠

2𝐴𝑚1
𝑠𝜙 = 𝑖 sgn(𝑚)

(
𝐴𝑚1
𝑠𝑠 − 𝐴𝑚1

𝜙𝜙

)
.

(2.3)

These ansätze are consistent with the leading order behaviour of the equatorial magnetic moments
documented in Holdenried-Chernoff (2021). However, the five constraints on the equatorial magnetic
moments derived here form a proper superset of the constraints in Holdenried-Chernoff (2021). Specfi-
cially, two of these relations are absent in the dissertation, namely

2𝐴𝑚0
𝑠𝜙 = 𝑖 sgn(𝑚)

(
𝐴𝑚0
𝑠𝑠 − 𝐴𝑚0

𝜙𝜙

)
, |𝑚 | = 1;

2𝐴𝑚1
𝑠𝜙 = 𝑖 sgn(𝑚)

(
𝐴𝑚1
𝑠𝑠 − 𝐴𝑚1

𝜙𝜙

)
, |𝑚 | ≥ 2.

The first of these two has been rediscovered in the previous section by re-deriving the formulae. The
second relation cannot be discovered as long as we only consider the relation between lowest order
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behaviours. In fact, from this we see that there are regularity constraints even on the second-order term
in the Taylor expansion in 𝑠.

It should be noted that the derivations above ONLY considered regularity of the tensor fields.
However, magnetic moments BB are formed by outer product of the magnetic field B. In other words,
the magnetic moment tensor is the rank-1 transformation of the magnetic field(

𝐵2
𝑥 𝐵𝑥𝐵𝑦

𝐵𝑦𝐵𝑥 𝐵2
𝑦

)
=

(
𝐵𝑥

𝐵𝑦

) (
𝐵𝑥

𝐵𝑦

)⊺
,

(
𝐵2
𝑠 𝐵𝑠𝐵𝜙

𝐵𝜙𝐵𝑠 𝐵2
𝜙

)
=

(
𝐵𝑠

𝐵𝜙

) (
𝐵𝑠

𝐵𝜙

)⊺
This constraints is not imposed in the derivations above, which assumes arbitrary tensor field. It thus
poses a question that if we expand 𝐵2

𝑠 , 𝐵2
𝜙

and 𝐵𝑠𝐵𝜙 separately, are we artificially expanding the image
of field to moment mapping. Part of the space formed by the expansions might not have underlying
magnetic fields (i.e. not surjective). [This problem requires further notice.]

2.2 Challenges in implementing the regularity conditions

In her dissertation, Daria briefly described how to implement coupling between lowest order coefficients
in 𝑠, namely by expanding some quantities starting from 𝑛 = 1, but adding manually the 𝑛 = 0 contribution
as a coupling term. This implementation (as confirmed by her Mathematica notebook) is equivalent to
the following expansion:

𝐵𝑒𝑠 =

∞∑︁
𝑛=0

𝐶𝑚𝑛
𝑒𝑠

[
(1 − 𝑠2)𝑠 |𝑚 |−1𝑃

(𝛼,𝛽)
𝑛 (2𝑠2 − 1)

]
𝐵𝑒𝜙 = 𝑖 sgn(𝑚)

∞∑︁
𝑛=0

𝐶𝑚𝑛
𝑒𝑠

[
(1 − 𝑠2)𝑠 |𝑚 |−1𝑃

(𝛼,𝛽)
𝑛 (2𝑠2 − 1)

]
+

∞∑︁
𝑛=0

𝐶𝑚𝑛
𝑒𝜙

[
(1 − 𝑠2)𝑠 |𝑚 |+1𝑃

(𝛼′ ,𝛽′ )
𝑛 (2𝑠2 − 1)

]
(2.4)

for |𝑚 | ≥ 1 (for𝑚 = 0 there is no coupling between these coefficients). Note that the bases corresponding
to coefficients 𝐶𝑚𝑛

𝑒𝜙
has the prefactor 𝑠 |𝑚 |+1 instead of 𝑠 |𝑚 |−1. The Jacobi polynomial indices 𝛼 and 𝛽

can be chosen relatively freely, so as to enforce maximal sparsity on the matrices. For instance, if one
uses (1− 𝑠2)𝑠 |𝑚 |−1𝑃

(𝛼,𝛽)
𝑛 (2𝑠2 − 1) and (1− 𝑠2)𝑠 |𝑚 |+1𝑃

(𝛼′ ,𝛽′ )
𝑛 (2𝑠2 − 1) respectively as the test functions

for 𝐵𝑒𝑠 and 𝐵𝑒𝜙 induction equations, a reasonable choice of the indices will be
𝛼 = 2

𝛽 = |𝑚 | − 3
2
,


𝛼′ = 2

𝛽′ = |𝑚 | + 1
2

This configuration will diagonalize the matrix blocks (𝐵𝑒𝑠, 𝐶
𝑚𝑛
𝑒𝑠 ) and (𝐵𝑒𝜙, 𝐶

𝑚𝑛
𝑒𝜙

), which are the diagonal
blocks in the mass matrix. By (𝐵,𝐶) I denote the matrix block formed by taking the inner product of
the test function corresponding to field 𝐵 and the bases corresponding to coefficient 𝐶. However, the
coupling block, i.e. (𝐵𝑒𝜙, 𝐶

𝑚𝑛
𝑒𝑠 ) will not be diagonal. This will form a dense matrix as an off-diagonal

block in the mass matrix.
Although the previous expansion is only for 𝐵𝑒𝑠, 𝐵𝑒𝜙, similar trick can also be used to implement the

lowest-order coupling for 𝐵𝑒𝑠,𝑧-𝐵𝑒𝜙,𝑧 pair, 𝑀𝑠𝑧-𝑀𝜙𝑧 pairs - basically any quantity pairs that behave like
(𝑠, 𝜙) equatorial components of a vector. Daria even applied the same method to implementing the low-
order coupling of the rank-2 tensors. Her implementation (see, e.g. C1QP_reg_diff_visc_daria.nb)
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is equivalent to the following expansion:

𝑀𝑠𝜙

𝑚
=

∑︁
𝑛

𝐶𝑚𝑛
𝑠𝜙

[√︁
1 − 𝑠2𝑠 |𝑚 |−2𝑃

(𝛼,𝛽)
𝑛 (2𝑠2 − 1)

]
𝑀𝜙𝜙

𝑚
= 𝑖 sgn(𝑚)

∑︁
𝑛

𝐶𝑚𝑛
𝑠𝜙

[√︁
1 − 𝑠2𝑠 |𝑚 |−2𝑃

(𝛼,𝛽)
𝑛 (2𝑠2 − 1)

]
+

∑︁
𝑛

𝐶𝑚𝑛
𝜙𝜙

[√︁
1 − 𝑠2𝑠 |𝑚 |𝑃 (𝛼′ ,𝛽′ )

𝑛 (2𝑠2 − 1)
]

�𝑧𝑀𝑠𝜙

𝑚
=

∑︁
𝑛

𝐶𝑚𝑛
𝑧𝑠𝜙

[
(1 − 𝑠2)𝑠 |𝑚 |−2𝑃

(𝛼,𝛽)
𝑛 (2𝑠2 − 1)

]
�𝑧𝑀𝜙𝜙

𝑚
= 𝑖 sgn(𝑚)

∑︁
𝑛

𝐶𝑚𝑛
𝑧𝑠𝜙

[
(1 − 𝑠2)𝑠 |𝑚 |−2𝑃

(𝛼,𝛽)
𝑛 (2𝑠2 − 1)

]
+

∑︁
𝑛

𝐶𝑚𝑛
𝑧𝜙𝜙

[
(1 − 𝑠2)𝑠 |𝑚 |𝑃 (𝛼′ ,𝛽′ )

𝑛 (2𝑠2 − 1)
]

Once again, we are looking at𝑚 ≥ 2, as the coupling for𝑚 = 0 is different, and the coupling for𝑚 = ±1 is
absent. This would have worked, had the coupling between tensorial elements in cylindrical coordinates
only occurred in the lowest order 𝑛 = 0. However, the previous section has already shown otherwise. In
addition to the coupling in 𝑛 = 0, we have additional three-component coupling in order 𝑛 = 1 for 𝑚 ≥ 2,
as well as a previously ignored three-component coupling in order 𝑛 = 0 for 𝑚 = ±1. Even if the same
trick can be used for implementing the three-component coupling in order 𝑛 = 0 for 𝑚 = ±1:

2𝑀𝑚0
𝑠𝜙 = 𝑖 sgn(𝑚)

(
𝑀𝑚0

𝑠𝑠 − 𝐴𝑚0
𝜙𝜙

)
by taking the following expansion,

𝑀𝑠𝑠

𝑚
=

∑︁
𝑛

𝐶𝑚𝑛
𝑠𝑠

[√︁
1 − 𝑠2𝑠𝑃 (𝛼,𝛽)

𝑛 (2𝑠2 − 1)
]

𝑀𝜙𝜙

𝑚
=

∑︁
𝑛

𝐶𝑚𝑛
𝜙𝜙

[√︁
1 − 𝑠2𝑠𝑃 (𝛼,𝛽)

𝑛 (2𝑠2 − 1)
]

𝑀𝑠𝜙

𝑚
=
𝑖 sgn(𝑚)

2

{∑︁
𝑛

𝐶𝑚𝑛
𝑠𝑠

[√︁
1 − 𝑠2𝑠𝑃 (𝛼,𝛽)

𝑛 (2𝑠2 − 1)
]
−

∑︁
𝑛

𝐶𝑚𝑛
𝜙𝜙

[√︁
1 − 𝑠2𝑠𝑃 (𝛼,𝛽)

𝑛 (2𝑠2 − 1)
]}

+
∑︁
𝑛

𝐶𝑚𝑛
𝑠𝜙

[√︁
1 − 𝑠2𝑠3𝑃 (𝛼′ ,𝛽′ )

𝑛 (2𝑠2 − 1)
]
,

the coupling in order 𝑛 = 1 is just not feasible to be implemented in this way. Granted, it may be possible
to write down the following expansion,

𝑀𝑠𝑠

𝑚
= 𝑠 |𝑚 |−2

√︁
1 − 𝑠2

{
𝐶0 + 𝐶1𝑠

2 + 𝑠4
∑︁
𝑛

𝐶𝑚𝑛
𝑠𝑠

[
𝑃
(𝛼,𝛽)
𝑛 (2𝑠2 − 1)

]}
𝑀𝜙𝜙

𝑚
= 𝑠 |𝑚 |−2

√︁
1 − 𝑠2

{
−𝐶0 + 𝐶2𝑠

2 + 𝑠4
∑︁
𝑛

𝐶𝑚𝑛
𝜙𝜙

[
𝑃
(𝛼,𝛽)
𝑛 (2𝑠2 − 1)

]}
𝑀𝑠𝜙

𝑚
= 𝑠 |𝑚 |−2

√︁
1 − 𝑠2

{
𝑖 sgn(𝑚)𝐶0 +

𝑖 sgn(𝑚)
2

(𝐶1 − 𝐶2)𝑠2 + 𝑠4
∑︁
𝑛

𝐶𝑚𝑛
𝑠𝜙

[
𝑃
(𝛼,𝛽)
𝑛 (2𝑠2 − 1)

]}
,

but it then becomes a painstaking task to look for appropriate test functions. Note that now we
have three additional bases 𝑠 |𝑚 |−2

√
1 − 𝑠2 and 𝑠 |𝑚 |

√
1 − 𝑠2 (occuring twice) in addition to the bases

𝑠 |𝑚 |+2
√

1 − 𝑠2𝑃 (𝛼,𝛽)
𝑛 (2𝑠2 − 1). Therefore, a total number of 3𝑁 + 3 test functions are needed to form a

linear system. Where exactly do we place the extra three test functions? It seems it doesn’t make sense
either way and always breaks the symmetry of the problem. This difficulty calls for a new expansion of
the fields.

2.3 Conjugate variables

Is there a way to circumvent manually enforcing all of these regularity constraints by designing intricate
expansions? The answer is yes, according to Matthew and Stefano. For the vector quantities in cylindrical
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coordinates, i.e. components 𝐴𝑠 and 𝐴𝜙, they suggest that instead of expanding them separately, one
should rather be looking for expansions of 𝐴𝑠 ± 𝑖𝐴𝜙. These will have the expansion

𝐴𝑠 + 𝑖𝐴𝜙 =
∑︁
𝑚

𝑠 |𝑚+1 | 𝑝(𝑠2)𝑒𝑖𝑚𝜙

𝐴𝑠 − 𝑖𝐴𝜙 =
∑︁
𝑚

𝑠 |𝑚−1 | 𝑝(𝑠2)𝑒𝑖𝑚𝜙
(2.5)

The regularity of these quantities is the sufficient and necessary condition that the corresponding Cartesian
components are regular.

Does this trick similarly apply to rank-2 tensors? Indeed, if we take a step back from the final regularity
constraints on individual matrix elements in cylindrical coordinates, we find that as an intermediate step,
we have eq.(2.1), a set of regularity constraints on the Fourier coefficients that are sufficient and necessary
conditions that the corresponding Cartesian components have regular Fourier coefficients. These are,
after all, what gave rise to the regularity constraints on individual variables. It follows directly, that the
components in the cylindrical coordinates need to and only need to have the following expansion

𝐴𝑠𝑠 + 𝐴𝜙𝜙 =
∑︁
𝑚

𝑠 |𝑚 |𝐶 (𝑠2)𝑒𝑖𝑚𝜙,

𝐴𝑠𝜙 − 𝐴𝜙𝑠 =
∑︁
𝑚

𝑠 |𝑚 |𝐶 (𝑠2)𝑒𝑖𝑚𝜙,

𝐴𝑠𝑠 − 𝐴𝜙𝜙 + 𝑖
(
𝐴𝑠𝜙 + 𝐴𝜙𝑠

)
=

∑︁
𝑚

𝑠 |𝑚+2 |𝐶 (𝑠2)𝑒𝑖𝑚𝜙,

𝐴𝑠𝑠 − 𝐴𝜙𝜙 − 𝑖
(
𝐴𝑠𝜙 + 𝐴𝜙𝑠

)
=

∑︁
𝑚

𝑠 |𝑚−2 |𝐶 (𝑠2)𝑒𝑖𝑚𝜙 .

Since the first two equations have identical right hand sides, any invertible linear combination of them
will remain sufficient and necessary conditions. For reasons that will become obvious shortly, these can
be transformed into a more symmetric form

𝐴𝑠𝑠 + 𝐴𝜙𝜙 − 𝑖
(
𝐴𝑠𝜙 − 𝐴𝜙𝑠

)
=

∑︁
𝑚

𝑠 |𝑚 |𝐶 (𝑠2)𝑒𝑖𝑚𝜙,

𝐴𝑠𝑠 + 𝐴𝜙𝜙 + 𝑖
(
𝐴𝑠𝜙 − 𝐴𝜙𝑠

)
=

∑︁
𝑚

𝑠 |𝑚 |𝐶 (𝑠2)𝑒𝑖𝑚𝜙,

𝐴𝑠𝑠 − 𝐴𝜙𝜙 + 𝑖
(
𝐴𝑠𝜙 + 𝐴𝜙𝑠

)
=

∑︁
𝑚

𝑠 |𝑚+2 |𝐶 (𝑠2)𝑒𝑖𝑚𝜙,

𝐴𝑠𝑠 − 𝐴𝜙𝜙 − 𝑖
(
𝐴𝑠𝜙 + 𝐴𝜙𝑠

)
=

∑︁
𝑚

𝑠 |𝑚−2 |𝐶 (𝑠2)𝑒𝑖𝑚𝜙 .

(2.6)

We now see that the left-hand-side quantities in eqs.(2.5) and (2.6) can be used in place of the original
vector/tensor components as independent variables, so that the regularity conditions become clean and
simple. Further, we shall see that these quantities can be related to the original components via a unitary
transform. For the vector components, these new variables are given by(

𝐴+
𝐴−

)
=

( 1√
2
(𝐴𝑠 + 𝑖𝐴𝜙)

1√
2
(𝐴𝑠 − 𝑖𝐴𝜙)

)
=

1
√

2

(
1 𝑖

1 −𝑖

) (
𝐴𝑠

𝐴𝜙

)
= U

(
𝐴𝑠

𝐴𝜙

)
. (2.7)

An additional factor 1/
√

2 is introduced to make the transform matrix unitary. For the rank-2 tensor
components, the new variables as shown in eq.(2.6) can be alternatively written as(

𝐴Tr− 𝐴+
𝐴− 𝐴Tr+

)
=

1
2

(
𝐴𝑠𝑠 + 𝐴𝜙𝜙 − 𝑖

(
𝐴𝑠𝜙 − 𝐴𝜙𝑠

)
𝐴𝑠𝑠 − 𝐴𝜙𝜙 + 𝑖

(
𝐴𝑠𝜙 + 𝐴𝜙𝑠

)
𝐴𝑠𝑠 − 𝐴𝜙𝜙 − 𝑖

(
𝐴𝑠𝜙 + 𝐴𝜙𝑠

)
𝐴𝑠𝑠 + 𝐴𝜙𝜙 + 𝑖

(
𝐴𝑠𝜙 − 𝐴𝜙𝑠

) )(
𝐴Tr− 𝐴+
𝐴− 𝐴Tr+

)
=

1
2

(
1 𝑖

1 −𝑖

) (
𝐴𝑠𝑠 𝐴𝑠𝜙

𝐴𝜙𝑠 𝐴𝜙𝜙

) (
1 1
−𝑖 𝑖

)
= U

(
𝐴𝑠𝑠 𝐴𝑠𝜙

𝐴𝜙𝑠 𝐴𝜙𝜙

)
U𝐻 .

(2.8)

20



For implementation purposes, it is sometimes useful to write the transform not as a double matrix
multiplication, but a single matrix-vector product for flattened vector

©­­­«
𝐴Tr−
𝐴Tr+
𝐴+
𝐴−

ª®®®¬ =
1
2

©­­­«
1 1 −𝑖 𝑖

1 1 𝑖 −𝑖
1 −1 𝑖 𝑖

1 −1 −𝑖 −𝑖

ª®®®¬
©­­­«
𝐴𝑠𝑠

𝐴𝜙𝜙

𝐴𝑠𝜙

𝐴𝜙𝑠

ª®®®¬ = Ũ
©­­­«
𝐴𝑠𝑠

𝐴𝜙𝜙

𝐴𝑠𝜙

𝐴𝜙𝑠

ª®®®¬ ,©­­­«
𝐴𝑠𝑠

𝐴𝜙𝜙

𝐴𝑠𝜙

𝐴𝜙𝑠

ª®®®¬ =
1
2

©­­­«
1 1 1 1
1 1 −1 −1
𝑖 −𝑖 −𝑖 𝑖

−𝑖 𝑖 −𝑖 𝑖

ª®®®¬
©­­­«
𝐴Tr−
𝐴Tr+
𝐴+
𝐴−

ª®®®¬ = Ũ𝐻
©­­­«
𝐴Tr−
𝐴Tr+
𝐴+
𝐴−

ª®®®¬ .
(2.9)

where Ũ is the transform for the augmented vector, and is also unitary.

Before we move on, we note that all of these transformed quantities have a common status. If we
first look at the transform for the vector components in cylindrical coordinates(

𝐴𝑥

𝐴𝑦

)
=

(
cos 𝜙 − sin 𝜙
sin 𝜙 cos 𝜙

) (
𝐴𝑠

𝐴𝜙

)
=

1
2

(
𝑒𝑖𝜙 + 𝑒−𝑖𝜙 𝑖

(
𝑒𝑖𝜙 − 𝑒−𝑖𝜙

)
−𝑖

(
𝑒𝑖𝜙 − 𝑒−𝑖𝜙

)
𝑒𝑖𝜙 + 𝑒−𝑖𝜙

) (
𝐴𝑠

𝐴𝜙

)
= R

(
𝐴𝑠

𝐴𝜙

)
The rotation matrix has the following spectral decomposition,

R =

(
1 1
−𝑖 𝑖

) (
𝑒𝑖𝜙 0
0 𝑒−𝑖𝜙

) (
1 1
−𝑖 𝑖

)−1

=
1
2

(
1 1
−𝑖 𝑖

) (
𝑒𝑖𝜙 0
0 𝑒−𝑖𝜙

) (
1 𝑖

1 −𝑖

)
= U

(
𝑒𝑖𝜙 0
0 𝑒−𝑖𝜙

)
U𝐻

i.e. eigenvector 1√
2
(1,±𝑖) corresponding to eigenvalues 𝑒∓𝑖𝜙. This means that certain linear combinations

(given by the inverse of the eigenvalue matrix) of the components retain their form during rotation, except
for an additional phase factor:

𝐴𝑥 + 𝑖𝐴𝑦 = 𝑒+𝑖𝜙
(
𝐴𝑠 + 𝑖𝐴𝜙

)
𝐴𝑥 − 𝑖𝐴𝑦 = 𝑒−𝑖𝜙

(
𝐴𝑠 − 𝑖𝐴𝜙

) =⇒
𝐴𝑠 + 𝑖𝐴𝜙 = 𝑒−𝑖𝜙

(
𝐴𝑥 + 𝑖𝐴𝑦

)
𝐴𝑠 − 𝑖𝐴𝜙 = 𝑒+𝑖𝜙

(
𝐴𝑥 − 𝑖𝐴𝑦

)
.

Therefore, the transformed quantities are nothing but from the (inverse of the) eigenvectors of the rotation
matrix. Moreover, one can immediately deduce the regular expansion from these relations. We know
the Cartesian components behave like scalars, so the right-hand-sides have Fourier coefficients that are
∼ 𝑠 |𝑚 | . Therefore, the valid expansion for these transformed quantities would be

𝐴𝑠 + 𝑖𝐴𝜙 =
∑︁
𝑚

𝑠 |𝑚+1 | 𝑝(𝑠2)𝑒𝑖𝑚𝜙

𝐴𝑠 − 𝑖𝐴𝜙 =
∑︁
𝑚

𝑠 |𝑚−1 | 𝑝(𝑠2)𝑒𝑖𝑚𝜙

exactly as we expected. Similarly, let us consider the transform of rank-2 tensors in the form of matrices
between cylindrical and Cartesian coordinates. It can of course be done via(

𝐴𝑥𝑥 𝐴𝑥𝑦

𝐴𝑦𝑥 𝐴𝑦𝑦

)
=

(
cos 𝜙 − sin 𝜙
sin 𝜙 cos 𝜙

) (
𝐴𝑠𝑠 𝐴𝑠𝜙

𝐴𝜙𝑠 𝐴𝜙𝜙

) (
cos 𝜙 sin 𝜙
− sin 𝜙 cos 𝜙

)
but once again, it can also be written in matrix-vector form,

©­­­«
𝐴𝑥𝑥

𝐴𝑦𝑦

𝐴𝑥𝑦

𝐴𝑦𝑥

ª®®®¬ =

©­­­«
cos2 𝜙 sin2 𝜙 − sin 𝜙 cos 𝜙 − sin 𝜙 cos 𝜙
sin2 𝜙 cos2 𝜙 + sin 𝜙 cos 𝜙 + sin 𝜙 cos 𝜙

cos 𝜙 sin 𝜙 − cos 𝜙 sin 𝜙 cos2 𝜙 − sin2 𝜙

cos 𝜙 sin 𝜙 − cos 𝜙 sin 𝜙 − sin2 𝜙 cos2 𝜙

ª®®®¬
©­­­«
𝐴𝑠𝑠

𝐴𝜙𝜙

𝐴𝑠𝜙

𝐴𝜙𝑠

ª®®®¬ = R̃
©­­­«
𝐴𝑠𝑠

𝐴𝜙𝜙

𝐴𝑠𝜙

𝐴𝜙𝑠

ª®®®¬ .
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The augmented rotation matrix for the rank-2 tensor can be shown to have eigendecomposition

R̃ =
1
4

©­­­«
1 1 1 1
1 1 −1 −1
𝑖 −𝑖 −𝑖 𝑖

−𝑖 𝑖 −𝑖 𝑖

ª®®®¬
©­­­«
1

1
𝑒𝑖2𝜙

𝑒−𝑖2𝜙

ª®®®¬
©­­­«
1 1 −𝑖 𝑖

1 1 𝑖 −𝑖
1 −1 𝑖 𝑖

1 −1 −𝑖 −𝑖

ª®®®¬ = Ũ𝐻DŨ

This gives the relations that we have already obtained before,

𝐴𝑥𝑥 + 𝐴𝑦𝑦 − 𝑖(𝐴𝑥𝑦 − 𝐴𝑦𝑥) = 𝐴𝑠𝑠 + 𝐴𝜙𝜙 − 𝑖(𝐴𝑠𝜙 − 𝐴𝜙𝑠)
𝐴𝑥𝑥 + 𝐴𝑦𝑦 + 𝑖(𝐴𝑥𝑦 − 𝐴𝑦𝑥) = 𝐴𝑠𝑠 + 𝐴𝜙𝜙 + 𝑖(𝐴𝑠𝜙 − 𝐴𝜙𝑠)
𝐴𝑥𝑥 − 𝐴𝑦𝑦 + 𝑖(𝐴𝑥𝑦 + 𝐴𝑦𝑥) = 𝑒+𝑖2𝜙

(
𝐴𝑠𝑠 − 𝐴𝜙𝜙 + 𝑖(𝐴𝑠𝜙 + 𝐴𝜙𝑠)

)
𝐴𝑥𝑥 − 𝐴𝑦𝑦 − 𝑖(𝐴𝑥𝑦 + 𝐴𝑦𝑥) = 𝑒−𝑖2𝜙

(
𝐴𝑠𝑠 − 𝐴𝜙𝜙 − 𝑖(𝐴𝑠𝜙 + 𝐴𝜙𝑠)

) (2.10)

which will give the regularity conditions given the scalar property of Cartesian components. We also
see that due to degeneracy, the double eigenvalue 1 has a 2-D eigen subspace. The eigen decomposition
for R̃ is hence nonunique, and any non-singular linear combination of the first two eigenvectors will
form a new pair of alternative variables, that work equally well for the regularity conditions, for instance,
𝐴𝑠𝑠 + 𝐴𝜙𝜙 and 𝐴𝑠𝜙 − 𝐴𝜙𝑠. However, only the currently chosen configuration satisfy the tensor transform
eq.(2.8). This is the reason why I transformed the equations into form (2.6).

To summarize, all of these new quantities, at least for rank-1 and rank-2 tensors, can be derived by
computing the eigenvalue decomposition of the rotation matrix for the flattened component vector,

R = V𝚲V−1

and so the relation
yCart = R𝑘yCyl =⇒ V−1yCart = 𝚲

(
V−1yCyl

)
gives the transformed quantities that happen to retain their forms during changing coordinates systems.
For an arbitrary rank tensor in general, it would suffice to seek the matrix decomposition of the rotation
matrix in the form of

R𝑘 = V𝚲U (2.11)

where V,U ∈ C2𝑘×2𝑘 are invertible matrices whose elements are constants independent of 𝜙, and
𝚲 = diag

(
𝐶 𝑗𝑒

𝑖𝑚 𝑗 𝜙
)

is a diagonal matrix whose diagonal entries are solely an exponential function of 𝜙.
If such a factorization is found, the rotation transform can be rewritten as

V−1yCart = 𝚲
(
UyCyl

)
(2.12)

and the elements in UyCyl would give the 2𝑘 transformed quantities whose Fourier coefficients take the
form of 𝑠 |𝑚+𝑚 𝑗 |𝜙.

For now I have been referring to these "new" quantities transformed quantities. This is a temporary
designation, and I would rather call it something else. The candidates are the following

• Names that indicate the affinity / duality of the transformed quantities with the original ones

– Conjugate variables: this is what is used in a previous version of this manuscript, and in
the current version of the code, but it has been pointed out by Stefano that the word is too
strongly associated with complex conjugates.

– Companion variables: a more neutral version, but we still have instances already bearing this
name, e.g. the companion matrix.

– Dual variables: a straightforward version, but there are many already well-established terms
in mathematics, such as dual space, etc.
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– Auxiliary variables: a rather neutral description, but it might give a feeling that the new set
of variables are somewhat inferior, and are only invented for convenience.

• Names that emphasize that the transformed quantities have unique mathematical status

– Canonical variables: this seems to be used by Dahlen and Tromp for similar quantities, but
I cannot see what is canonical about it.

2.4 Evolution equation for transformed quantities

In the part that follows, I shall restrict my discussion to the relevant quadratic moment tensor of the
magnetic field. Due to the fact that this quadratic moment tensor is symmetric, 𝑀𝑠𝜙 = 𝑀𝜙𝑠, we have
𝑀Tr− = 𝑀Tr+, which I shall denote as 𝑀1. The four relations are reduced to three relations,

𝑀1 =
1
2

(
𝑀𝑠𝑠 + 𝑀𝜙𝜙

)
=

∑︁
𝑚

𝑠 |𝑚 | 𝑝(𝑠2)𝑒𝑖𝑚𝜙,

𝑀+ =
1
2

(
𝑀𝑠𝑠 − 𝑀𝜙𝜙 + 𝑖2𝑀𝑠𝜙

)
=

∑︁
𝑚

𝑠 |𝑚+2 | 𝑝(𝑠2)𝑒𝑖𝑚𝜙,

𝑀− =
1
2

(
𝑀𝑠𝑠 − 𝑀𝜙𝜙 − 𝑖2𝑀𝑠𝜙

)
=

∑︁
𝑚

𝑠 |𝑚−2 | 𝑝(𝑠2)𝑒𝑖𝑚𝜙 .

(2.13)

We now have a chance to remove all undesired coefficient coupling as regularity constraints, by replacing
PG fields 𝑀𝑠𝑠, 𝑀𝜙𝜙, 𝑀𝑠𝜙 and �𝑧𝑀𝑠𝑠, �𝑧𝑀𝜙𝜙, �𝑧𝑀𝑠𝜙 with the transformed variables. For the 12 magnetic
quantities (except for 𝐵𝑟 , which lives on the sphere, and 𝐵𝑒

𝑧 , which is a scalar) in PG variables, the
corresponding transformed quantities are


𝑀𝑠𝑠

𝑀𝜙𝜙

𝑀𝑠𝜙

−→


𝑀1 =

1
2

(
𝑀𝑠𝑠 + 𝑀𝜙𝜙

)
𝑀+ =

1
2

(
𝑀𝑠𝑠 − 𝑀𝜙𝜙 + 𝑖2𝑀𝑠𝜙

)
𝑀− =

1
2

(
𝑀𝑠𝑠 − 𝑀𝜙𝜙 − 𝑖2𝑀𝑠𝜙

)

𝑀𝑠𝑠 =

1
2

(
2𝑀1 + 𝑀+ + 𝑀−

)
𝑀𝜙𝜙 =

1
2

(
2𝑀1 − 𝑀+ − 𝑀−

)
𝑀𝑠𝜙 =

1
2𝑖

(
𝑀+ − 𝑀−

)
{
𝑀𝑠𝑧

𝑀𝜙𝑧

−→


𝑀𝑧+ =

1
√

2

(
𝑀𝑠𝑧 + 𝑖𝑀𝜙𝑧

)
𝑀𝑧− =

1
√

2

(
𝑀𝑠𝑧 − 𝑖𝑀𝜙𝑧

)

𝑀𝑠𝑧 =

1
√

2

(
𝑀𝑧+ + 𝑀𝑧−

)
𝑀𝜙𝑧 =

1
√

2𝑖

(
𝑀𝑧+ − 𝑀𝑧−

)


�𝑧𝑀𝑠𝑠�𝑧𝑀𝜙𝜙�𝑧𝑀𝑠𝜙

−→


𝑧𝑀1 =

1
2

(�𝑧𝑀𝑠𝑠 + �𝑧𝑀𝜙𝜙

)
𝑧𝑀+ =

1
2

(�𝑧𝑀𝑠𝑠 − �𝑧𝑀𝜙𝜙 + 𝑖2 �𝑧𝑀𝑠𝜙

)
𝑧𝑀− =

1
2

(�𝑧𝑀𝑠𝑠 − �𝑧𝑀𝜙𝜙 − 𝑖2 �𝑧𝑀𝑠𝜙

)


�𝑧𝑀𝑠𝑠 =
1
2

(
2𝑧𝑀1 + 𝑧𝑀+ + 𝑧𝑀−

)
�𝑧𝑀𝜙𝜙 =

1
2

(
2𝑧𝑀1 − 𝑧𝑀+ − 𝑧𝑀−

)
�𝑧𝑀𝑠𝜙 =

1
2𝑖

(
𝑧𝑀+ − 𝑧𝑀−

)
{
𝐵𝑒
𝑠

𝐵𝑒
𝜙

−→


𝐵𝑒
+ =

1
√

2

(
𝐵𝑒
𝑠 + 𝑖𝐵𝑒

𝜙

)
𝐵𝑒
− =

1
√

2

(
𝐵𝑒
𝑠 − 𝑖𝐵𝑒

𝜙

)

𝐵𝑒
𝑠 =

1
√

2

(
𝐵𝑒
+ + 𝐵𝑒

−
)

𝐵𝑒
𝜙 =

1
√

2𝑖

(
𝐵𝑒
+ − 𝐵𝑒

−
)

{
𝐵𝑒
𝑠,𝑧

𝐵𝑒
𝜙,𝑧

−→


𝐵𝑒
+,𝑧 =

1
√

2

(
𝐵𝑒
𝑠,𝑧 + 𝑖𝐵𝑒

𝜙,𝑧

)
𝐵𝑒
−,𝑧 =

1
√

2

(
𝐵𝑒
𝑠,𝑧 − 𝑖𝐵𝑒

𝜙,𝑧

)

𝐵𝑒
𝑠,𝑧 =

1
√

2

(
𝐵𝑒
+,𝑧 + 𝐵𝑒

−,𝑧
)

𝐵𝑒
𝜙,𝑧 =

1
√

2𝑖

(
𝐵𝑒
+,𝑧 − 𝐵𝑒

−,𝑧
)

(2.14)
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These transformed quantities now have easily defined function spaces. They merely require a power
function in 𝑠 as the prefactor for regularity, and a power function in 𝐻 from even or odd axial integrations.
The Fourier coefficients for these quantities thus take the form

𝑀1
𝑚
= 𝐻𝑠 |𝑚 | 𝑝(𝑠2)

𝑀+
𝑚
= 𝐻𝑠 |𝑚+2 | 𝑝(𝑠2)

𝑀−
𝑚
= 𝐻𝑠 |𝑚−2 | 𝑝(𝑠2)

𝑀𝑧+
𝑚
= 𝐻2𝑠 |𝑚+1 | 𝑝(𝑠2)

𝑀𝑧−
𝑚
= 𝐻2𝑠 |𝑚−1 | 𝑝(𝑠2)

𝑧𝑀1
𝑚
= 𝐻2𝑠 |𝑚 | 𝑝(𝑠2)

𝑧𝑀+
𝑚
= 𝐻2𝑠 |𝑚+2 | 𝑝(𝑠2)

𝑧𝑀−
𝑚
= 𝐻2𝑠 |𝑚−2 | 𝑝(𝑠2)

𝐵𝑒𝑚
+ = 𝑠 |𝑚+1 | 𝑝(𝑠2)
𝐵𝑒𝑚
− = 𝑠 |𝑚−1 | 𝑝(𝑠2)

𝐵𝑒𝑚
+,𝑧 = 𝑠

|𝑚+1 | 𝑝(𝑠2)
𝐵𝑒𝑚
−,𝑧 = 𝑠

|𝑚−1 | 𝑝(𝑠2)

(2.15)

When the expansion for the equatorial fields are further combined with a harmonic field contribution, the
equatorial Fourier coefficients will have a further 𝐻2 prefactor in the front. Apart from that, they are free
of any coupling in their Fourier coefficients. The leading order behaviour alone guarantees regularity.

Despite all the merits with this set of expansions, it is not directly applicable to the current form of
the PG equations. The reason lies in the test functions to be used to reduce the equations into linear
systems. With every tensor component comprising of multiple bases, there is no straightforward and
consistent way to choose a set of test functions.

One way to overcome the test function issue, and perhaps the most consistent way, is to expand the
transformed quantities in their own evolution equations. In other words, the evolution equations in terms
of magnetic field quantities should first be transformed into evolution equations of the corresponding
transformed quantities. I shall present here the explicit derivation of one set of these quantities, namely
from (𝑀𝑠𝑠, 𝑀𝑠𝜙, 𝑀𝜙𝜙) to (𝑀1, 𝑀+, 𝑀−). Starting from the original evolution equations (Jackson and
Maffei 2020)

𝜕𝑀𝑠𝑠

𝜕𝑡
= −𝐻 (u · ∇𝑒)

𝑀𝑠𝑠

𝐻
+ 2𝑀𝑠𝑠

𝜕𝑢𝑠

𝜕𝑠
+ 2
𝑠
𝑀𝑠𝜙

𝜕𝑢𝑠

𝜕𝜙
,

𝜕𝑀𝜙𝜙

𝜕𝑡
= − 1

𝐻
(u · ∇𝑒)

(
𝐻𝑀𝜙𝜙

)
− 2𝑀𝜙𝜙

𝜕𝑢𝑠

𝜕𝑠
+ 2𝑠𝑀𝑠𝜙

𝜕

𝜕𝑠

(𝑢𝜙
𝑠

)
,

𝜕𝑀𝑠𝜙

𝜕𝑡
= −(u · ∇𝑒)𝑀𝑠𝜙 + 𝑠𝑀𝑠𝑠

𝜕

𝜕𝑠

(𝑢𝜙
𝑠

)
+ 1
𝑠
𝑀𝜙𝜙

𝜕𝑢𝑠

𝜕𝜙
.

Using the transforms (2.14), the equations can be rewritten as

𝜕𝑀𝑠𝑠

𝜕𝑡
= −(u · ∇𝑒)𝑀𝑠𝑠 +

1
2

(
2𝑀1 + 𝑀+ + 𝑀−

) (
2
𝜕𝑢𝑠

𝜕𝑠
− 𝑠𝑢𝑠

𝐻2

)
− 𝑖

(
𝑀+ − 𝑀−

) 1
𝑠

𝜕𝑢𝑠

𝜕𝜙
,

𝜕𝑀𝜙𝜙

𝜕𝑡
= −(u · ∇𝑒)𝑀𝜙𝜙 − 1

2

(
2𝑀1 − 𝑀+ − 𝑀−

) (
2
𝜕𝑢𝑠

𝜕𝑠
− 𝑠𝑢𝑠

𝐻2

)
− 𝑖

(
𝑀+ − 𝑀−

)
𝑠
𝜕

𝜕𝑠

𝑢𝜙

𝑠
,

𝜕𝑀𝑠𝜙

𝜕𝑡
= −(u · ∇𝑒)𝑀𝑠𝜙 + 1

2

(
2𝑀1 + 𝑀+ + 𝑀−

)
𝑠
𝜕

𝜕𝑠

(𝑢𝜙
𝑠

)
+ 1

2

(
2𝑀1 − 𝑀+ − 𝑀−

) 1
𝑠

𝜕𝑢𝑠

𝜕𝜙
.

Re-combining these equations again using the transforms (2.14), we obtain the evolution equations for
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the transformed variables
𝜕𝑀1

𝜕𝑡
= − (u · ∇𝑒) 𝑀1 +

1
2

(
𝑀+ + 𝑀−

) (
2
𝜕𝑢𝑠

𝜕𝑠
− 𝑠𝑢𝑠

𝐻2

)
− 𝑖

2

(
𝑀+ − 𝑀−

) (
𝑠
𝜕

𝜕𝑠

𝑢𝜙

𝑠
+ 1
𝑠

𝜕𝑢𝑠

𝜕𝜙

)
,

𝜕𝑀+
𝜕𝑡

= − (u · ∇𝑒) 𝑀+ + 𝑀1

(
2
𝜕𝑢𝑠

𝜕𝑠
− 𝑠𝑢𝑠

𝐻2

)
+ 𝑖𝑀1

(
𝑠
𝜕

𝜕𝑠

𝑢𝜙

𝑠
+ 1
𝑠

𝜕𝑢𝑠

𝜕𝜙

)
+ 𝑖𝑀+

(
𝑠
𝜕

𝜕𝑠

𝑢𝜙

𝑠
− 1
𝑠

𝜕𝑢𝑠

𝜕𝜙

)
,

𝜕𝑀−
𝜕𝑡

= − (u · ∇𝑒) 𝑀− + 𝑀1

(
2
𝜕𝑢𝑠

𝜕𝑠
− 𝑠𝑢𝑠

𝐻2

)
− 𝑖𝑀1

(
𝑠
𝜕

𝜕𝑠

𝑢𝜙

𝑠
+ 1
𝑠

𝜕𝑢𝑠

𝜕𝜙

)
− 𝑖𝑀−

(
𝑠
𝜕

𝜕𝑠

𝑢𝜙

𝑠
− 1
𝑠

𝜕𝑢𝑠

𝜕𝜙

)
.

By applying the same strategy to all 12 relevant PG variables, we come to the complete list of evolution
equations for the transformed quantities:

𝜕𝑀1

𝜕𝑡
= − (u · ∇𝑒) 𝑀1 +

1
2

(
𝑀+ + 𝑀−

) (
2
𝜕𝑢𝑠

𝜕𝑠
− 𝑠𝑢𝑠

𝐻2

)
− 𝑖

2

(
𝑀+ − 𝑀−

) (
𝑠
𝜕

𝜕𝑠

𝑢𝜙

𝑠
+ 1
𝑠

𝜕𝑢𝑠

𝜕𝜙

)
,

𝜕𝑀+
𝜕𝑡

= − (u · ∇𝑒) 𝑀+ + 𝑀1

(
2
𝜕𝑢𝑠

𝜕𝑠
− 𝑠𝑢𝑠

𝐻2

)
+ 𝑖𝑀1

(
𝑠
𝜕

𝜕𝑠

𝑢𝜙

𝑠
+ 1
𝑠

𝜕𝑢𝑠

𝜕𝜙

)
+ 𝑖𝑀+

(
𝑠
𝜕

𝜕𝑠

𝑢𝜙

𝑠
− 1
𝑠

𝜕𝑢𝑠

𝜕𝜙

)
,

𝜕𝑀−
𝜕𝑡

= − (u · ∇𝑒) 𝑀− + 𝑀1

(
2
𝜕𝑢𝑠

𝜕𝑠
− 𝑠𝑢𝑠

𝐻2

)
− 𝑖𝑀1

(
𝑠
𝜕

𝜕𝑠

𝑢𝜙

𝑠
+ 1
𝑠

𝜕𝑢𝑠

𝜕𝜙

)
− 𝑖𝑀−

(
𝑠
𝜕

𝜕𝑠

𝑢𝜙

𝑠
− 1
𝑠

𝜕𝑢𝑠

𝜕𝜙

)
,

𝜕𝑀𝑧+
𝜕𝑡

= −(u · ∇𝑒)𝑀𝑧+ −
1
√

2

(
𝜕

𝜕𝑠

𝑠𝑢𝑠

𝐻2 + 𝑖

𝐻2
𝜕𝑢𝑠

𝜕𝜙

)
𝑧𝑀1 +

1
√

2

(
− 𝜕

𝜕𝑠

𝑠𝑢𝑠

𝐻2 + 𝑖

𝐻2
𝜕𝑢𝑠

𝜕𝜙

)
𝑧𝑀+

+ 1
2

(
3
𝜕𝑢𝑧

𝜕𝑧
− 𝑖

𝑠

𝜕𝑢𝑠

𝜕𝜙
+ 𝑖𝑠 𝜕

𝜕𝑠

𝑢𝜙

𝑠

)
𝑀𝑧+ +

1
2

(
𝜕𝑢𝑧

𝜕𝑧
+ 2

𝜕𝑢𝑠

𝜕𝑠
+ 𝑖
𝑠

𝜕𝑢𝑠

𝜕𝜙
+ 𝑖𝑠 𝜕

𝜕𝑠

𝑢𝜙

𝑠

)
𝑀𝑧−,

𝜕𝑀𝑧−
𝜕𝑡

= −(u · ∇𝑒)𝑀𝑧− − 1
√

2

(
𝜕

𝜕𝑠

𝑠𝑢𝑠

𝐻2 − 𝑖

𝐻2
𝜕𝑢𝑠

𝜕𝜙

)
𝑧𝑀1 +

1
√

2

(
− 𝜕

𝜕𝑠

𝑠𝑢𝑠

𝐻2 − 𝑖

𝐻2
𝜕𝑢𝑠

𝜕𝜙

)
𝑧𝑀−

+ 1
2

(
𝜕𝑢𝑧

𝜕𝑧
+ 2

𝜕𝑢𝑠

𝜕𝑠
− 𝑖

𝑠

𝜕𝑢𝑠

𝜕𝜙
− 𝑖𝑠 𝜕

𝜕𝑠

𝑢𝜙

𝑠

)
𝑀𝑧+ +

1
2

(
3
𝜕𝑢𝑧

𝜕𝑧
+ 𝑖
𝑠

𝜕𝑢𝑠

𝜕𝜙
− 𝑖𝑠 𝜕

𝜕𝑠

𝑢𝜙

𝑠

)
𝑀𝑧−,

𝜕𝑧𝑀1

𝜕𝑡
= −(u · ∇𝑒)𝑧𝑀1 +

𝜕𝑢𝑧

𝜕𝑧
𝑧𝑀1

+
(
𝜕𝑢𝑠

𝜕𝑠
+ 1

2
𝜕𝑢𝑧

𝜕𝑧

) (
𝑧𝑀+ + 𝑧𝑀−

)
− 𝑖

2

(
1
𝑠

𝜕𝑢𝑠

𝜕𝜙
+ 𝑠 𝜕

𝜕𝑠

𝑢𝜙

𝑠

) (
𝑧𝑀+ − 𝑧𝑀−

)
,

𝜕𝑧𝑀+
𝜕𝑡

= −(u · ∇𝑒)𝑧𝑀+ +
(
𝜕𝑢𝑧

𝜕𝑧
+ 𝑖𝑠 𝜕

𝜕𝑠

𝑢𝜙

𝑠
− 𝑖

𝑠

𝜕𝑢𝑠

𝜕𝜙

)
𝑧𝑀+ +

(
2
𝜕𝑢𝑠

𝜕𝑠
+ 𝜕𝑢𝑧
𝜕𝑧

+ 𝑖𝑠 𝜕
𝜕𝑠

𝑢𝜙

𝑠
+ 𝑖
𝑠

𝜕𝑢𝑠

𝜕𝜙

)
𝑧𝑀1,

𝜕𝑧𝑀−
𝜕𝑡

= −(u · ∇𝑒)𝑧𝑀− +
(
𝜕𝑢𝑧

𝜕𝑧
− 𝑖𝑠 𝜕

𝜕𝑠

𝑢𝜙

𝑠
+ 𝑖
𝑠

𝜕𝑢𝑠

𝜕𝜙

)
𝑧𝑀− +

(
2
𝜕𝑢𝑠

𝜕𝑠
+ 𝜕𝑢𝑧
𝜕𝑧

− 𝑖𝑠 𝜕
𝜕𝑠

𝑢𝜙

𝑠
− 𝑖

𝑠

𝜕𝑢𝑠

𝜕𝜙

)
𝑧𝑀1,

𝜕𝐵𝑒
+

𝜕𝑡
= − (u𝑒 · ∇𝑒) 𝐵𝑒

+ +
1
2
𝐵𝑒+

[(
𝜕

𝜕𝑠
− 𝑖

𝑠

𝜕

𝜕𝜙

) (
𝑢𝑒𝑠 + 𝑖𝑢𝑒𝜙

)
+ 1
𝑠

(
𝑢𝑒𝑠 − 𝑖𝑢𝑒𝜙

)]
+ 1

2
𝐵𝑒
−

[(
𝜕

𝜕𝑠
+ 𝑖
𝑠

𝜕

𝜕𝜙

) (
𝑢𝑒𝑠 + 𝑖𝑢𝑒𝜙

)
− 1
𝑠

(
𝑢𝑒𝑠 + 𝑖𝑢𝑒𝜙

)]
,

𝜕𝐵𝑒
−

𝜕𝑡
= − (u𝑒 · ∇𝑒) 𝐵𝑒

− + 1
2
𝐵𝑒
+

[(
𝜕

𝜕𝑠
− 𝑖

𝑠

𝜕

𝜕𝜙

) (
𝑢𝑒𝑠 − 𝑖𝑢𝑒𝜙

)
− 1
𝑠

(
𝑢𝑒𝑠 − 𝑖𝑢𝑒𝜙

)]
+ 1

2
𝐵𝑒
−

[(
𝜕

𝜕𝑠
+ 𝑖
𝑠

𝜕

𝜕𝜙

) (
𝑢𝑒𝑠 − 𝑖𝑢𝑒𝜙

)
+ 1
𝑠

(
𝑢𝑒𝑠 + 𝑖𝑢𝑒𝜙

)]
𝜕𝐵𝑒

+,𝑧
𝜕𝑡

= − (u𝑒 · ∇𝑒) 𝐵𝑒
+,𝑧 +

1
2
𝐵𝑒
+,𝑧

[(
𝜕

𝜕𝑠
− 𝑖

𝑠

𝜕

𝜕𝜙

) (
𝑢𝑒𝑠 + 𝑖𝑢𝑒𝜙

)
+ 1
𝑠

(
𝑢𝑒𝑠 − 𝑖𝑢𝑒𝜙

)]
− 𝜕𝑢𝑧

𝜕𝑧
𝐵𝑒
+,𝑧 +

1
2
𝐵𝑒
−,𝑧

[(
𝜕

𝜕𝑠
+ 𝑖
𝑠

𝜕

𝜕𝜙

) (
𝑢𝑒𝑠 + 𝑖𝑢𝑒𝜙

)
− 1
𝑠

(
𝑢𝑒𝑠 + 𝑖𝑢𝑒𝜙

)]
𝜕𝐵𝑒

−,𝑧
𝜕𝑡

= − (u𝑒 · ∇𝑒) 𝐵𝑒
−,𝑧 +

1
2
𝐵𝑒
+,𝑧

[(
𝜕

𝜕𝑠
− 𝑖

𝑠

𝜕

𝜕𝜙

) (
𝑢𝑒𝑠 − 𝑖𝑢𝑒𝜙

)
− 1
𝑠

(
𝑢𝑒𝑠 − 𝑖𝑢𝑒𝜙

)]
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− 𝜕𝑢𝑧

𝜕𝑧
𝐵𝑒
−,𝑧 +

1
2
𝐵𝑒
−,𝑧

[(
𝜕

𝜕𝑠
+ 𝑖
𝑠

𝜕

𝜕𝜙

) (
𝑢𝑒𝑠 − 𝑖𝑢𝑒𝜙

)
+ 1
𝑠

(
𝑢𝑒𝑠 + 𝑖𝑢𝑒𝜙

)]
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Chapter 3

Additional physical constraints

3.1 Cauchy-Schwarz inequality

The Cauchy-Schwarz inequality dictates that for arbitrary inner products ⟨·, ·⟩ and any elements u and v
from the inner product space, the following inequality holds

⟨u, u⟩⟨v, v⟩ = ∥u∥∥v∥ ≥ |⟨u, v⟩|2. (3.1)

where the norms are induced by the inner product. We note that two sets of variables in our PG variables
can be written as inner products. The symmetric axial integral of a quadratic moment is in fact an inner
product of the two factor quantities. Assuming 𝑓 (𝑧), 𝑔(𝑧) ∈ R,

𝑓 𝑔 =

∫ 𝐻

−𝐻
𝑓 (𝑧)𝑔(𝑧) 𝑑𝑧 = ⟨ 𝑓 , 𝑔⟩. (3.2)

This is nothing but the inner product for e.g. the Hilbert space, 𝐿2 space. Similarly, we can write the
anti-symmetric axial integral of the product between 𝑧 and a quadratic moment as an inner product with
non-negative weight

𝑧 𝑓 𝑔 =

∫ 𝐻

−𝐻
sgn(𝑧)𝑧 𝑓 (𝑧)𝑔(𝑧) 𝑑𝑧 =

∫ 𝐻

−𝐻
𝑓 (𝑧)𝑔(𝑧) |𝑧 | 𝑑𝑧 = ⟨ 𝑓 , 𝑔⟩, (3.3)

which is the inner product for the weighted 𝐿2 space, 𝐿2
|𝑧 | ( [−𝐻, 𝐻]). The Cauchy-Schwarz inequalities

give rise to the two nonlinear inequalities of the PG variables,

𝑀𝑠𝑠 · 𝑀𝜙𝜙 ≥
���𝑀𝑠𝜙

���2�𝑧𝑀𝑠𝑠 · �𝑧𝑀𝜙𝜙 ≥
����𝑧𝑀𝑠𝜙

���2 (3.4)
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Chapter 4

Implementation of the numerics

4.1 Inner product matrix

The Galerkin method in spectral method and finite-element method typically involves computing matrices
that are formed by inner products. Considering a series of test functions 𝜑′

𝑛′ (𝑥) and their inner product
with a series of functions 𝜑𝑛 (𝑥) (which could be the trial functions in the mass matrix). The inner
product matrix is given by

(G)𝑛′𝑛 = 𝐺𝑛′𝑛 = ⟨𝜑′𝑛′ (𝑥), 𝜑𝑛 (𝑥)⟩ =
∫

𝜑′𝑛′ (𝑥)𝜑𝑛 (𝑥)𝑟 (𝑥) 𝑑𝑥.

This is dubbed a Gramian matrix in the code (method numerics.InnerQuad_Rule.gramian ), although
technically it is an abuse of terminology (Gram matrix should refer to those formed by the inner product
of the same basis, e.g. ⟨𝜑𝑛′ , 𝜑𝑛⟩). Except for the case where the integral can be calculated analytically
and efficiently (In eigenvalue problems, possibly all elements can be calculated analytically; the problem
however is efficiency: automatic symbolic computation can be very slow), the integral is approximated
using a quadrature rule,

𝐺𝑛′𝑛 ≈
∑︁
𝑘

𝑤𝑘𝜑
′
𝑛′ (𝑥𝑘)𝜑𝑛 (𝑥𝑘)𝑟 (𝑥𝑘)

where 𝑥𝑘 and 𝑤𝑘 are the quadrature points and the weights respectively. The inner product matrix can
be expressed as a summation along one axis of a 3-D array,

𝐺𝑛′𝑛 =
∑︁
𝑘

𝑤𝑘 [𝜑′𝑛′ (𝑥𝑘)𝜑𝑛 (𝑥𝑘)𝑟 (𝑥𝑘)] =
∑︁
𝑘

𝑤𝑘 𝐹𝑛′𝑛𝑘 .

Therefore, the matrix element can be constructed by first constructing the 3-D array 𝐹𝑛′𝑛𝑘 , and then
summing over the last index using weights 𝑤𝑘 . An naive way to construct the 3-D array is to compute
element by element. If we take G ∈ C𝑁×𝑁 , and the number of quadrature points 𝐾 ≈ 𝑁 , the complexity
of this approach is summarized by

• 𝑂 (𝑁3) evaluations of 𝜑′
𝑛′ and 𝜑𝑛.

• 𝑂 (𝑁3) algebraic operations, in the form of broadcasting.

Alternatively, the inner product matrix can be constructed from the outer product of matrices. Introducing
the notations

Φ′ = (𝜑′𝑛′ (𝑥𝑘)) =
©­­«
— 𝜑′1(x

⊺) —
...

— 𝜑′
𝑁
(x⊺) —

ª®®¬ , Φ = (𝜑𝑛 (𝑥𝑘)) =
©­­«
— 𝜑1(x⊺) —

...

— 𝜑𝑁 (x⊺) —

ª®®¬ .
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whose each row represents one basis evaluated at 𝐾 quadrature points. Denoting diag (𝑤(𝑥𝑘)𝑟 (𝑥𝑘)) as
W, the inner product matrix has the the expression

G = Φ′WΦ⊺ . (4.1)

Note the diagonal matrix formed by the weights should preferably used as a broadcasted multiplication
on Φ′. The complexity of this approach is reduced for function evaluation,

• 𝑂 (𝑁2) evaluations of 𝜑′
𝑛′ and 𝜑𝑛,

• 𝑂 (𝑁2) scalar multiplications in the form of broadcasting,

• 𝑂 (𝑁3) algebraic operations in the form of two matrix multiplications.

This especially saves resources when evaluation of the functions is relatively expensive. For instance,
evaluating Jacobi polynomials and the result of linear operators operated on these polynomials can
involve evaluating Jacobi polynomials for 5 to 10 terms. Cutting back a factor of 𝑁 has significant gains
at relative large 𝑁 .

As a final remark, the 𝑂 (𝑁3) algebraic operation, especially in the second approach, can also be
circumvented if an iterative approach is used for the eigensolver that only uses matrix-vector products.

4.2 Gauss-Jacobi quadrature

[Automatic determination of quadrature type, evaluation of Jacobi polynomials using recurrence rela-
tions.]

4.3 Multi-precision quadrature

[Multi-precision Gauss-Jacobi nodes and weights; comparison of different multi-precision library]
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Appendix A

Code design

A.1 Unifined Modelling Language (UML) graphs of the code

Figure A.1: Module for supplementary vector operations and calculus.
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base

core

equations

expansion

base.CollectionPG

pg_field_names : list

Psi
vorticity

Mpp
Mpz
Msp
Mss
Msz
zMpp
zMsp
zMss

magnetic moments

Bs_e
Bp_e
Bz_e
dBp_dz_e
dBs_dz_e

B @ equatorial

Br_b
Bs_p
Bp_p
Bz_p
Bs_m
Bp_m
Bz_m

B @ boundary

vorticity()
subset_mag()

-> LabeledSubCollection
subset_moments()

-> LabeledSubCollection
subset_B_equator()

-> LabeledSubCollection
subset_B_bound()

-> LabeledSubCollection
subset_B_bound_cyl()

-> LabeledSubCollection

Base class for collections of
PG variable / equation.
Indexable (int or str) + iterable
can extract arbitrary subsets

base.LabeledCollection

Indexable + Iterable

n_fields
n_iter : int

iter_filter
iter_name

property

__getitem__(key: [int, str, slice])
__setitem__(key, value)
__iter__()
__next__()
apply(fun: Callable)

base.LabeledSubCollection

Indexable + Iterable

base_collection
n_fields
n_iter : int

iter_filter
iter_name

property

__getitem__(key: [int, str, slice])
__setitem__(key, value)
__iter__()
__next__()

core.pgvar

Total PG variables

core.pgvar_bg

PG background field

core.pgvar_ptb

PG perturbation field

equations.eqs_pg

PG equations

equations.eqs_pg_lin

Linearized PG equations

expansion.RadialExpansion

Radial expansion for PG variables

coeffs: Array(sympy.Symbol)
rad_basis: RadialBasis

Explicit forms of PG fields

expansion.RadialBasis

Radial basis used for PG fields

coeffs: Array(sympy.Symbol)
bases: Array(sympy.Expr)

base_collection

rad_basis

Figure A.2: Module PG model. Red items are items to be implemented
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A.2 Why does the quadrature works in SciPy?

This section is regarding a technical detail on the behaviour of eval_jacobi in the scipy package,
especially when the degree 𝑛 is negative.

Why are there negative degrees in the Jacobi polynomials used in the code?
In computing the system matrices, stiffness matrix K in particular, it is often the case that we need

to compute the inner product in the form of〈
𝑠𝑚1 (1 − 𝑠2)𝑚2𝑃

(𝛼′ ,𝛽′ )
𝑛′ (2𝑠2 − 1),L

(
𝑠𝑚3 (1 − 𝑠2)𝑚4𝑃

(𝛼,𝛽)
𝑛 (2𝑠2 − 1)

)〉
.

The result of the trial function being operated on by the linear operator L typically involves 𝑃 (𝛼,𝛽)
𝑛 (2𝑠2−

1), its derivative with respect to s, i.e. 𝑑𝑘

𝑑𝑠𝑘
𝑃
(𝛼,𝛽)
𝑛 (2𝑠2 −1), or in other words, involving derivatives of the

Jacobi polynomial 𝑑𝑘

𝑑𝜉 𝑘 𝑃
(𝛼,𝛽)
𝑛 (𝜉) | 𝜉=2𝑠2−1. This is not a problem in symbolic engines (actually, the only

functioning way in SymPy to calculate such inner products is to keep the derivative as it is, unevaluated),
but not acceptable for numerical routines. Typical numerical routines, whether using SciPy in Python
or MATLAB, have no idea how to calculate the "derivative of a Jacobi polynomial". In order to use this
numerical routines, the only remaining feasible way seems to be simplifying the expression into explicit
polynomials at each given 𝑛 and 𝑛′ (using some symbolic engines), and then hand over the explicit
polynomial to SciPy. However, this means that the most desirable feature of this numerical libraries,
i.e. vectorized and parallelized operations, are out of the picture. Evaluating these inner products purely
numerically thus seems to encounter a problem.

There is, however, a robust workaround: the derivatives of Jacobi polynomials can always be
converted to another Jacobi polynomial, using the relation

𝑑𝑘

𝑑𝑧𝑘
𝑃
(𝛼,𝛽)
𝑛 (𝑧) = Γ(𝛼 + 𝛽 + 𝑛 + 1 + 𝑘)

2𝑘Γ(𝛼 + 𝛽 + 𝑛 + 1)
𝑃
(𝛼+𝑘,𝛽+𝑘 )
𝑛−𝑘 (𝑧).

This can be easily done as soon as SymPy is asked to simplify or "evaluate" the derivatives concerning
the Jacobi polynomials. Now the integrand can be safely converted to a series of algebraic calculations
involving only the undifferentiated Jacobi polynomials. This expression can be handed over to numerical
functions, that can be evaluated at multiple 𝑛, 𝑛′ as well as 𝑧 in a vectorized fashion very efficiently.
However, here comes another question: what is 𝑃 (𝛼+𝑘,𝛽+𝑘 )

𝑛−𝑘 (𝑧), when 𝑛 < 𝑘? How will the numerical
routine handle this?

Is there a Jacobi polynomial with negative degree?
Strictly/semantically speaking, there is no such a thing. A polynomial is really just a polynomial,

and can only have non-negative degrees. In fact, if you ask SymPy to evaluate a Jacobi polynomial with
negative degree:

1 >>> sympy.jacobi(-1, 5/2, 4, -0.9).evalf()
2 ...
3 ValueError: Cannot generate Jacobi polynomial of degree -1

Indeed, if we follow the definition on Wikipedia page,

𝑃
(𝛼,𝛽)
𝑛 (𝑧) = (𝛼 + 1)𝑛

𝑛! 2𝐹1

(
−𝑛, 1 + 𝛼 + 𝛽 + 𝑛, 1 + 𝛼, 1 − 𝑧

2

)
where 2𝐹1 is the hypergeometric function. The form of the prefactor is apparently only restricted to non-
negative 𝑛, since factorial as well as Pochhammer’s symbol usually only takes non-negative 𝑛 arguments.
However, both Mathematica and SciPy are okay with evaluating Jacobi polynomials with negative
degrees:
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1 (*Mathematica*)
2 In[1]= N[JacobiP[-1, 5/2, 4, -0.9]]
3 Out[1]= 0.

1 # Python
2 >>> from scipy.special import eval_jacobi
3 >>> eval_jacobi(-1, 5/2, 4, -0.9)
4 0.

As long as... well, the polynomial with the negative degree is not evaluated at one specific point, 𝑧 = −1:

1 (*Mathematica*)
2 In[1]= N[JacobiP[-1, 5/2, 4, -1]]
3 ... Power: Infinite expression 1/0^4 encountered
4 ... Infinity: Indeterminate expression 0 ComplexInfinity encountered
5 Out[1]= Indeterminate

1 # Python
2 >>> from scipy.special import eval_jacobi
3 >>> eval_jacobi(-1, 5/2, 4, -1.)
4 nan

But why is this the case, if the polynomial shouldn’t even have negative degree?

What is the implementation for the Jacobi polynomial with negative degree?
Now we have to understand what is happening behind the curtain: how is the Jacobi polynomial

actually implemented, such that both Mathematica andSciPy allow negative degrees? Will this guarantee
that the quadrature of the inner product is correct? The best way to answer these questions is to check
the source code. Unfortunately, this does not work for Mathematica, a closed-source software. This
can however be done for SciPy. It took me a while to find the relevant piece in the source code, as this
part is in Cython:

1 cdef inline number_t eval_jacobi(double n, double alpha, double beta,
number_t x) noexcept nogil:

2 cdef double a, b, c, d
3 cdef number_t g
4

5 d = binom(n+alpha, n)
6 a = -n
7 b = n + alpha + beta + 1
8 c = alpha + 1
9 g = 0.5*(1-x)

10 return d * hyp2f1(a, b, c, g)

It turns out that instead of using the factorial and Pochhammer’s symbol, SciPy implements the following
relation

𝑃
(𝛼,𝛽)
𝑛 (𝑧) =

(
𝑛 + 𝛼
𝑛

)
2𝐹1

(
−𝑛, 1 + 𝛼 + 𝛽 + 𝑛, 1 + 𝛼, 1 − 𝑧

2

)
where the prefactor is given by a binomial coefficient. Usually, the binomial coefficient does not make
sense for negative 𝑛, but if one further looks at the source code for binom, one would realize that except
for special occasions, the binomial coefficients are calculated as(

𝑛 + 𝛼
𝑛

)
=

1
(𝑛 + 𝛼 + 1)𝐵(1 + 𝛼, 1 + 𝑛) =

1
𝑛 + 𝛼 + 1

Γ(2 + 𝛼 + 𝑛)
Γ(1 + 𝛼)Γ(1 + 𝑛)

which gives 0 for any 𝑛 ∈ Z− ∪ {0} when 𝛼 + 𝑛 ∉ Z− (because Γ(1 + 𝑛) → ∞). Now, the second
criterion is always fulfilled. As 𝑃 (𝛼+𝑘,𝛽+𝑘 )

𝑛−𝑘 is the ultimate function to be evaluated, our 𝑛 + 𝛼 is actually
(𝑛 − 𝑘) + (𝛼 + 𝑘) = 𝑛 + 𝛼. Since the original Jacobi polynomial is a legitimate polynomial, 𝛼 > −1 and
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𝑛 ≥ 0, therefore 𝑛 + 𝛼 ∉ Z−. In summary, SciPy will give 0, which is the desired outcome, when a
Jacobi polynomial with negative degree is encountered.

On a related note, the Jacobi polynomial in the form of

𝑃
(𝛼,𝛽)
𝑛 (𝑧) = 1

𝑛 + 𝛼 + 1
Γ(2 + 𝛼 + 𝑛)

Γ(1 + 𝛼)Γ(1 + 𝑛) 2𝐹1

(
−𝑛, 1 + 𝛼 + 𝛽 + 𝑛, 1 + 𝛼, 1 − 𝑧

2

)
(A.1)

might be a good formula for analytic continuation in 𝛼, 𝛽, 𝑛. This formula seems to have finite value for
any point, except for a zero-measure set in the 4-D space.

So why does the evaluation fail at 𝑧 = −1 for negative 𝑛? This is the branch point for the hypergeo-
metric function at 𝑛 ∈ Z−, and evaluation is not available even for the equation above.

A.3 Jacobi polynomial and Legendre function

A small but serious trap has recently (Jan 2024) be identified with SymPy. Some Jacobi polynomials
will be rewritten in terms of associated Legendre polynomials, which however cannot be evaluated
numerically in SymPy.

Recall Jacobi polynomials are a special type of hypergeometric function, via the relation

𝑃
(𝛼,𝛽)
𝑛 (𝑧) = Γ(1 + 𝛼 + 𝑛)

Γ(1 + 𝛼)Γ(1 + 𝑛) 2𝐹1

(
−𝑛, 1 + 𝛼 + 𝛽 + 𝑛, 1 + 𝛼, 1 − 𝑧

2

)
.

At the same time, associated Legendre polynomials can be rewritten with hypergeometric functions as

𝑃𝑚
𝑛 (𝑧) =

1
Γ(1 − 𝑚)

(
1 + 𝑧
1 − 𝑧

) 𝑚
2

2𝐹1

(
−𝑛, 𝑛 + 1, 1 − 𝑚, 1 − 𝑧

2

)
.

The degree 𝑛 and order 𝑚 do not necessarily need to be integers; this expression provides analytic
continuation of the normal associated Legendre polynomial outside the unit circle |𝑧 | < 1. Using this
expression, associated Legendre polynomial is (a) in most cases not a hypergeometric function, unless
𝑚 = 0, and (b) not necessarily a polynomial, unless 𝑚 is even. Therefore, the name "associated Legendre
polynomial" is really an abuse of terminology. Calling it Legendre function, as Stegun does, is much
more reasonable.

We now look at the two cases where the two functions are indeed related. When 𝛼 = 𝛽 = 0, the
Jacobi polynomial is the ordinary Legendre polynomial, which is the Legendre function with 𝑚 = 0,

𝑃
(0,0)
𝑛 (𝑧) = 2𝐹1

(
−𝑛, 𝑛 + 1, 1,

1 − 𝑧
2

)
= 𝑃0

𝑛 (𝑧) = 𝑃𝑛 (𝑧). (A.2)

Therefore, when 𝛼 = 𝛽 = 0 is detected in sympy.jacobi , the Jacobi polynomial will be automatically
rewritten using sympy.legendre , unless evaluation=False is specified. Another rewriting happens
in the case when 𝛼 + 𝛽 = 0 although neither is zero. In this case,

𝑃
(−𝛽,𝛽)
𝑛 =

Γ(1 − 𝛽 + 𝑛)
Γ(1 − 𝛽)Γ(1 + 𝑛) 2𝐹1

(
−𝑛, 𝑛 + 1, 1 − 𝛽, 1 − 𝑧

2

)
=
Γ(1 − 𝛽 + 𝑛)
Γ(1 + 𝑛)

(
1 − 𝑧
1 + 𝑧

) 𝛽

2

𝑃
𝛽
𝑛 (𝑧).

(A.3)

When𝛼+𝛽 = 0 is detected in sympy.jacobi , the Jacobi polynomial will be automatically rewritten using
sympy.assoc_legendre , unless evaluate=False is specified. However, as 𝛼, 𝛽 > −1, the rewritten
associated Legendre polynomial always has non-integer order 𝑚. The current SymPy version cannot
evaluate assoc_legendre with non-integer 𝑚 numerically. This causes problem when the evaluating
the integrand using SymPy.
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Despite this complication, the current (Jan. 2024) implementation of PlesioGeostroPy is unlikely
to be affected by this. The reason is that all Jacobi polynomials used in trial basis functions either have
half-integer 𝛼 paired with integer 𝛽 (streamfunction Ψ), or integer 𝛼 paired with half-integer 𝛽 (magnetic
quantities). This remains true under differentiation, as differentiating a Jacobi polynomial raises both
indices by 1. In the end, 𝛼 + 𝛽 = 0 never occurs, and no rewriting of the Jacobi polynomial will be
triggered.
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