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Electromagnetic induction problem in a nutshell

Forward modelling: electromagnetic induction modelling

Frequency domain: B(r,w;o) = [ G(r,v',w;0) - j{r’, w) d’

Q
Time domain: B(r,t0) = / / G(r,v', t—t;0)-j(d', t) d'df
rRJO

Electrical conductivity o
lonospheric/magnetospheric electric (0,) forward, o
current J ’ inverse

Observable magnetic field B (or
electric field)

Inverse problem: electromagnetic induction sounding
Retrieve the model by minimizing the data misfit and solving the optimization problem:

min L(B"*(5. ), B°*)

g,)
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Electromagnetic induction problem in a nutshell

Forward modelling: electromagnetic induction modelling
A unified algebraic form:

d=F(o)c
Electrical conductivity o
forward
Source current parameter c (U,C) —d Observables d

inverse

Inverse problem: electromagnetic induction sounding
Optimization problem posed as a Separable Nonlinear Least Squares (SNLS):

1 A
min ~[r(o,0)| + SITalf,  r=d*—F(o)c
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Highlight

® An efficient way to tackle the joint model space inversion in EM induction sounding

® Simultaneous estimation of o and ¢
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Alternating

Forward modelling

Synthetic . 1 2 é 2 __ qobs
tests min 5 lx(o,0)|” + 5 |ITal|3, r=d F(o)c
o,

Model recovery

Source estimation

Beal d.ata
leiele: Why is it challenging? How to deal with it?
Summary i del ; dei ® Variable projection method (VP) for
oint model space of ¢ and c is very Separable Nonlinear Least Squares (SNLS)

References . . i
high-dimensional

® Alternating approaches
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ackground

Method
1 A
B — min 2 (o,¢)|? + SITolf,  r=d*—F(o)e

Alternating

Forward modelling

Synthetic
esis When given o, the best fitting ¢ can be easily found via linear least squares!

Model recovery
Source estimation
feal data ¢(0) =Fi(0)d = -Ji(0)d

inversion
Formulating ¢ as a function of o, the optimization can be conducted solely in ¢ instead of

Summary . .
in the joint model space

References

EM sounding problem viewed from variable projection (VP)

1 R 2 A
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—— y(t) = 2ca(l — 2at?) exp (—at?) s

tests 10
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Source estimation
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Summary

¢ € R™, and each element is given by - " g ; : ;
Figure: Data and target signal of fitting
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Method ® Alternate between o updates and ¢ regressions
VP inversion
® Prototype implementation by Koch and Kuvshinov 2013
Forward modelling ptimize on ¢
Synthetic ® "Linear valley” assumption .
Stopping
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Source estimation
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L (w;0) = Qulw; o) ent(w)

o = = = Z= DQAC s



Contents
1 Electromagnetic induction problem

2 Approaches to the joint model space

3 Insights from synthetic experiments

4 Real data inversion

5 Summary

«O> «F»r 4

it
v

DA 1551



Inverting
conductivity and
source field with

VP

Min and Grayver

Background

Method

VP inversion
Alternating

Forward modelling

Synthetic
tests

Source estimation

Real data
inversion

Summary

References

Methods tested on a synthetic dataset
(where o and ¢ are known) against
conventional method.

For VP / alternating approaches with
frequent linear regression (e.g.
Alt-Fibonacci):
® v 1-D conductivity recovery
® /v inducing field spectrum, all
modes and frequency bands

® Results comparable to
conventional method

Model recovery
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® § sensitive to ¢
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Source estimation
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Summary conductivity models:
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Source estimation: does conductivity matter?

How biased will the source estimate be?

e . 5~ 20% error for simplistic o

models, < 1.4% for inverted o model;

° 5%: 10 ~ 80% error for simplistic © models,
1 ~ 10% for inverted ¢ model.

= Overly simplistic models yield significantly higher errors in external field estimates!
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Source estimation: better conditioned in VP /Alt

Accounting for the induced field by modelling drastically improves the conditioning of the
source estimation problem (hence, better separability and resolution).

Gauss VP
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& 36 e
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Figure: Condition number of the linear operator in Gauss method, VP, and their ratios
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Real data inversion

The same method is then applied to time series of magnetic field observed at ground
observatories (2014-2018).
The source field during this period and the conductivity profile are co-estimated.
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'\V/Ipeth:d ® Simultaneous estimation of ionos-/magnetospheric source and mantle conductivity;
e i ® First application of Variable Projection to EM induction sounding;

Synthetic ® Non-trivial correlations between source and conductivity;

e e Tested on real data, obtained source field 2014-2018 + 1-D conductivity profile

Source estimation

Real data For details, see our recently published paper in Earth, Planets and Space: Simultaneous
mversion inversion for source field and mantle electrical conductivity using the variable projection
_ approach.

References

No "best of one world” without "best of both worlds”
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What is next? Framework of variable projection and
alternating approaches enables...

incorporation of prior knowledge on source structure
incorporation of data from multiple sources (e.g.
ground + satellites)

integration with core-field models (Cl, CHAOS)

new generation of self-consistent external current and
mantle conductivity models

Summary

Figure: ESA Swarm satellites (image from
ESA Earth Online - Swarm Mission)
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_ Time-domain noise can propagate into the frequency domain.

Results from  Windowed Fourier Transform of a time series z(t) takes the form
real data

. 1 .
Comparisons X(T, w) _ g‘r,w [x(t)] _ Z o Z wkx(tk) e—zwtk
kT8 ke k)

Assuming the noise 2/(¢) is a white noise, i.e.
® arei.i.d. random variables at each time point,
® zero-mean, with standard deviation s,

the uncertainty in the windowed spectrum

>k wi 2 i
Var[X'(r,w)] = =5 F & ~
Xk wk)2 N
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Time-domain noise can propagate into the frequency domain.

E[|X(r,w)]’] =E

Z wkwlz’ tk )

(Zk wk) ke{k.} le{l,}
Z wkle[ (tr) (¢ )} e (te—t)
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Z Z wkwl S 5kl W(t" tl)
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In practice, however, the uncertainty has to be water-leveled

w?
_ 2 2 __ Zk k 2 2
€= V €propagated te& = Z )2 °+ €

( £ Wk

The reason for that is the spectral leakage leads to an extra error that does not scale in the
same way as uncertainty propagated from time domain.
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Imperfect nature of windowed-Fourier-domain
modelling

Windowed spectrum in terms of complete spectrum

where W(w) =

1 )
X(1t,w) = Wk, 21, e~ (t—tr o)
(T,w) S wn 2 o (k)
1
XW w ez(wq "‘J)tp elwqtk
\/7 ZO lI Zk wg pZO
1 —1
X(r,w) = Z X(wq) W(w — wg) et
\/’ q
=0

1 K,—1 —wt, : . .
ST, Zp:() wp e~ ™™ is the spectrum of the window function.
i
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Comparisons

N-1
1 ~ .
X(r,w)=— X(wg) W(w — wy) e¥atro
VN &=
| Nl N
Y(rw) = — H(wq) X(wq) W(w — wg) giathro
VN &

= in general the following is NOT exactly satisfied

Y(r,w) = Hw)X(7,w)
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Inversion in the joint model space

) o
Joint model space, m = [c € CMo+M.

Data residual r(m) = r(o, ¢), its Jacobian J = 6(?;c) =[J, J| € CV*(MatMe),
Gauss-Newton algorithm:

JA3, + AT JH3] [A0] _ [Ifr,
343, I3\ | Ac| = 7 |3r,

Dimensionality: solve an augmented system in the (M, + M.) dimensional space.
Nonlinearity: both ¢ and c are updated in a fully non-linear fashion.
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Non-trivial bit: calculation of Fréchet derivatives:
Comparisons

J(0,é(0))=Dr=J, +3.D¢ =J, —J. DIl d,

Fortunately, close-form formula exists (Golub and Pereyra 1973):
Decomposition of the Jacobian

3(o,8(0)) =T, — 3,003, — (35)" (D3, r,
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Three variants of variable projection

e Original formulation (VP-full)
developed following Golub and
Pereyra 1973;

® Second and third algorithms
(RW2/RW3), proposed by
Ruhe and Wedin 1980;

® Linear constraint (feedback of
the linear variable) present in
VP-full and VP-RW2, but
absent in VP-RWS3;

Variants of
VP - full

J=1J,

VP - RW3

Variable Projection

— (P+D3.3)"d,
DF,, Fid, — (P§, DF, F!)"d,

J=J,=-DF,Fd,

w
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Variable Projection

® The full VP
® VP-RW2

® VP-RW3 (no implicit feedback of ¢)
Alternating approach

® Update c at iterations following
Fibonacci sequence (Alt-Fib)

® Update c every 5 iters (Alt-5)
® Update c every 10 iters (Alt-10)

® ¢ estimated only once at the
beginning (Alt-00)

Inversion schemes tested

Linear Update Frequency

T
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ifrom linear model
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Figure: Schematic plot of inversion schemes
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L-curves (Hansen and O'Leary 1993)

Roughness

(a) L-curve for Q-response inversion

Choice of regularizations

Xrms

119

11.8

11.7

107t 10° 10t
Roughness

(b) L-curve for VP inversion
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VP and Joint model inversion

Superiority of VP-RW2

When starting from (o, ¢ = —J1d,) and using Gauss-Newton algorithm, VP-RW2 is
guaranteed to propose models with lower misfits than joint model space inversion.

Model update on o proposed by Gauss-Newton algorithm in joint model space inversion
[Re [JIP3J,] + AL'T] Ao = —Re [J/Py 1,
Updates using VP variants
{Re {JfPiJg +rD3, (313,) 7 DJfrw} + )\I‘TI‘] Ao = —Re [Jfr,] (VP — full)

[Re [JEP53,] + AT'T] Ao = —Re [Jr,] (VP —RW2)
[Re [J]3,] + A\T'T] Ao = —Re [J/r,] (VP —RW3)



Inverting
conductivity and
source field with

VP

Min and Grayver

Preprocessing

Results from
real data

Comparisons

Gradient-based VP

Regardless of the choice of approximations (VP-full, VP-RW2 or RW3)
grady® = Dx* = Re [J7r, ] = ~Re [ (DI, I1d,) " Pidu] = Re [307r,]

Therefore when using gradient-based optimizations, the implicit feedback of the inducing
source estimate will not play a role.

In fact, consider a general objective function g(o, ¢), let ¢(o) = argmin.. g(o, ¢) and

9(0) = g(o, ¢(0)), we have
VUQ(U) = V[,—g(a, C)

i.e. the gradient is also equal to the explicit gradient (Aravkin and Leeuwen 2012).
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(b) Windowed spectrum of £3, estimates using Gauss method and VP
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Figure: 1-D conductivity profiles of the mantle obtained from Q-response
inversion and VP.
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But ... source parameterization has
considerable control on the
conductivity inversion result

Depth [km]
&
]

2000
= Grayver et al. (2017)
—— Q-inv - multimode
25001 — VP.- multimode
—— Q-inv - (1,0)
—— VP-(1,0)
104 10-3 102 10-1 10° 101

Conductivity [S/m]
[m] = = =
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Comparison between VP variants
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(b) Relative errors for mode €5
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Estimation of (); from real data
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Figure: Q1 and Cy responses estimated from mode (1, 0)
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Coherence between sources estimated from VP
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Figure: Relative difference between source estimates from VP and Gauss method,
compared with coherence estimated in transfer function regression.
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